为保证汽车行车安全,前舱盖需满足刚度、模态和行人保护等要求。针对汽车前舱盖的轻量化设计需求,建立了铸铝一体化前舱盖有限元模型,分析了前舱盖的刚度、模态和行人保护性能,构建了RBF-Kriging混合近似模型并联合存档微遗传算法(archi...为保证汽车行车安全,前舱盖需满足刚度、模态和行人保护等要求。针对汽车前舱盖的轻量化设计需求,建立了铸铝一体化前舱盖有限元模型,分析了前舱盖的刚度、模态和行人保护性能,构建了RBF-Kriging混合近似模型并联合存档微遗传算法(archive based micro genetic algorithm,AMGA)对前舱盖进行多目标优化。针对多目标优化产生的Pareto解集,提出一种基于模糊层次分析-逼近理想解排序(fuzzy analytic hierarchy process-technique for order preference by similarity to ideal solution,FAHP-TOPSIS)法对Pareto非劣解进行综合性能排名,主客观相结合地选择出最优方案。结果表明,在满足性能要求的前提下,最优一体化前舱盖质量降低了32.14%,轻量化效果显著。展开更多
文摘为保证汽车行车安全,前舱盖需满足刚度、模态和行人保护等要求。针对汽车前舱盖的轻量化设计需求,建立了铸铝一体化前舱盖有限元模型,分析了前舱盖的刚度、模态和行人保护性能,构建了RBF-Kriging混合近似模型并联合存档微遗传算法(archive based micro genetic algorithm,AMGA)对前舱盖进行多目标优化。针对多目标优化产生的Pareto解集,提出一种基于模糊层次分析-逼近理想解排序(fuzzy analytic hierarchy process-technique for order preference by similarity to ideal solution,FAHP-TOPSIS)法对Pareto非劣解进行综合性能排名,主客观相结合地选择出最优方案。结果表明,在满足性能要求的前提下,最优一体化前舱盖质量降低了32.14%,轻量化效果显著。