期刊文献+
共找到6,901篇文章
< 1 2 250 >
每页显示 20 50 100
高柔结构风振AMD控制模糊神经网络预测算法研究 被引量:1
1
作者 滕军 申崇胜 鲁志雄 《工程抗震与加固改造》 北大核心 2010年第1期7-12,43,共7页
基于Takagi-Sugeno模型的模糊神经网络的基本理论,建立了模糊神经网络预测模型。该模型结合神经网络控制和预测控制的优点,解决了控制中的时滞问题。研究了基于聚类法产生模糊神经网络预测控制的模糊逻辑系统,该方法便捷地解决了模糊逻... 基于Takagi-Sugeno模型的模糊神经网络的基本理论,建立了模糊神经网络预测模型。该模型结合神经网络控制和预测控制的优点,解决了控制中的时滞问题。研究了基于聚类法产生模糊神经网络预测控制的模糊逻辑系统,该方法便捷地解决了模糊逻辑控制中模糊控制规则基于专家控制策略和经验而无自学习能力的困难。以深圳京基金融中心为算例,利用模糊神经网络预测算法控制结构在风荷载作用下的振动,仿真结果表明,模糊神经网络预测算法能够有效地减小高柔结构加速度响应。 展开更多
关键词 高柔结构 AMD控制 风振 模糊神经网络预测算法
下载PDF
模糊神经网络预测算法在高柔结构风振AMD控制中的应用研究
2
作者 申崇胜 滕军 鲁志雄 《深圳土木与建筑》 2009年第3期35-40,共6页
基于Takagi-Sugeno模型的模糊神经网络的基本理论,本文建立了模糊神经网络预测模型。该模型结合神经网络控制和预测控制的优点,解决了控制中的时滞问题。研究了基于聚类法产生模糊神经网络预测控制的模糊逻辑系统,该方法便捷地解决... 基于Takagi-Sugeno模型的模糊神经网络的基本理论,本文建立了模糊神经网络预测模型。该模型结合神经网络控制和预测控制的优点,解决了控制中的时滞问题。研究了基于聚类法产生模糊神经网络预测控制的模糊逻辑系统,该方法便捷地解决了模糊逻辑控制中模糊控制规则基于专家控制策略和经验而无自学习能力的困难。以深圳京基金融中心为算例,利用模糊神经网络预测算法控制结构在风荷载作用下的振动,仿真结果表明模糊神经网络预测算法能够有效地减小高柔结构加速度响应。 展开更多
关键词 高柔结构 AMD控制 风振 模糊神经网络预测算法
下载PDF
基于K均值聚类算法和LSTM神经网络的管道腐蚀阶段预测方法
3
作者 王新颖 刘岚 +2 位作者 陈海群 胡磊磊 谢逢豪 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期84-89,共6页
针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波... 针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波形为出发点,对模型进行参数优化,最后进行管道腐蚀阶段预测,并根据评价指标对模型进行评价。研究表明:对LSTM神经网络模型适当增加隐藏层,可以使得模型更加稳定,鲁棒性更好;与现有故障诊断模型相比,LSTM神经网络模型的精度更高。 展开更多
关键词 声发射无损检测 腐蚀阶段预测 K-MEANS聚类算法 长短期记忆(LSTM)神经网络 鲁棒性
下载PDF
基于遗传算法和BP神经网络的矿区土壤重金属含量空间分布预测
4
作者 赵萍 阮旭东 +4 位作者 刘亚风 赵思逸 孙雨 常杰 周俊 《土壤》 CAS CSCD 北大核心 2024年第4期889-896,共8页
本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As... 本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As)含量的空间分布,并与BPNN和反比距离权重法(Inverse distance weighting,IDW)进行了比较。研究结果表明:受采矿活动影响,研究区土壤p H和重金属含量呈显著的空间分异性;GABP复合模型的数据扩增能够有效弥补BPNN对样本数量的依赖,同时结合了地理位置和高程属性,精度评价结果显示GABP模型的平均R^(2)、r、RMSE、MAE分别是IDW和BPNN的3.03倍、2.56倍,2.93倍、2.39倍,0.85倍、0.61倍,0.79倍、0.62倍,预测精度更高。模型解决了传统空间插值方法结果中可能出现负值和边界无法插值的问题,为土壤重金属含量空间分布预测提供了一种新方法。 展开更多
关键词 遗传算法 BP神经网络 GABP模型 空间分布预测 重金属含量
下载PDF
基于遗传算法的BP神经网络在轻质路基沉降预测中的应用 被引量:4
5
作者 沈璐 陈修和 +1 位作者 陶文斌 李健斌 《广西科技大学学报》 CAS 2024年第2期32-39,共8页
为更好地掌握轻质路基施工过程中的沉降变形情况,选取宁芜保通线部分轻质路基沉降监测数据,在BP(back propagation)神经网络模型的基础上,采用遗传算法对其进行优化,并将优化后的模型应用于轻质路基沉降预测。结果表明:遗传算法优化的B... 为更好地掌握轻质路基施工过程中的沉降变形情况,选取宁芜保通线部分轻质路基沉降监测数据,在BP(back propagation)神经网络模型的基础上,采用遗传算法对其进行优化,并将优化后的模型应用于轻质路基沉降预测。结果表明:遗传算法优化的BP神经网络在全局搜索能力和收敛能力方面具有明显优势;在轻质路基沉降预测任务中,多数预测结果的相对误差集中在更低的范围内,监测点1和监测点2预测结果的模型评价指标MAE、RMSE、MAPE分别为0.017 mm、0.021 mm、0.679%和0.013 mm、0.016 mm、1.395%,预测结果拟合程度高,误差小,模型泛化能力强。因此,遗传算法优化的BP神经网络的沉降预测模型具有可靠的预测效果与预测精度,在实际工程中可行性较高,可作为轻质路基沉降预测和预警的一种辅助手段。 展开更多
关键词 轻质路基 地基沉降 预测 遗传算法 BP神经网络
下载PDF
基于深度模糊神经网络的太阳总辐射预测研究 被引量:1
6
作者 乔楠 蒋波涛 +2 位作者 郑雨 刘燕东 王锦 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期59-64,共6页
提出一种基于深度模糊神经网络的太阳总辐射预测模型。首先利用Pearson相关系数分析太阳总辐射关键影响因素,其次利用深度学习多隐含层所具有的特征提取优势将模糊神经网络模块重复连接,构建深度模糊神经网络模型,并使用蝗虫优化算法对... 提出一种基于深度模糊神经网络的太阳总辐射预测模型。首先利用Pearson相关系数分析太阳总辐射关键影响因素,其次利用深度学习多隐含层所具有的特征提取优势将模糊神经网络模块重复连接,构建深度模糊神经网络模型,并使用蝗虫优化算法对其中心值和宽度进行优化。利用所提太阳总辐射预测模型对5个气象站点的相关数据进行仿真实验,并对结果进行分析。仿真结果表明:所提预测模型较其他模型具有较高的预测精度,验证了模型的有效性,可满足无辐射监测站点太阳总辐射预测的需要。 展开更多
关键词 太阳能 太阳辐射 预测 深度模糊神经网络 蝗虫优化算法
下载PDF
基于遗传算法小波神经网络的光伏电站发电量预测方法 被引量:3
7
作者 周强 张晓忠 +4 位作者 陈久益 沈炜 白建波 黄悦婷 汤霜霜 《智慧电力》 北大核心 2024年第4期78-84,共7页
针对光伏电站发电量预测不准确及多种气象因素下预测结果出现波动的问题,提出一种基于遗传算法小波神经网络(GA-WNN)的光伏电站发电量预测方法。首先,以反向传播(BP)神经网络的结构为框架,选择小波基函数作为隐含层的传递函数,将网络连... 针对光伏电站发电量预测不准确及多种气象因素下预测结果出现波动的问题,提出一种基于遗传算法小波神经网络(GA-WNN)的光伏电站发电量预测方法。首先,以反向传播(BP)神经网络的结构为框架,选择小波基函数作为隐含层的传递函数,将网络连接权值、小波函数伸缩因子、小波函数平移因子视为遗传个体,并通过遗传算法(GA)进行个体寻优以得到网络最优初始参数;然后,利用优化后的网络进行仿真预测,并对仿真数据进行分析;最后,将预测结果与实际发电量进行对比,以评估预测模型的误差和可靠性。实例分析表明,GA-WNN预测模型具有更小的误差和更高的预测精度,适用于精确预测光伏电站的发电量。 展开更多
关键词 光伏电站 发电量预测 遗传算法 小波神经网络
下载PDF
基于遗传算法优化BP神经网络的生石膏超细磨预测效果研究
8
作者 张帅 王宇斌 +2 位作者 桂婉婷 田晓珍 华开强 《化工矿物与加工》 CAS 2024年第6期9-15,共7页
为提高BP神经网络对生石膏超细磨效果的预测准确性,采用Pearson相关系数对超细石膏粉体正交试验产品细度与影响因素的显著性进行分析,并利用遗传算法优化BP神经网络对超细石膏粉体试验产品的d_(50)和d_(90)进行预测,结果表明:超细石膏... 为提高BP神经网络对生石膏超细磨效果的预测准确性,采用Pearson相关系数对超细石膏粉体正交试验产品细度与影响因素的显著性进行分析,并利用遗传算法优化BP神经网络对超细石膏粉体试验产品的d_(50)和d_(90)进行预测,结果表明:超细石膏粉体制备过程中影响细度因素的显著性由大到小依次为排矿口宽度、矿浆质量分数和超细磨时间。利用排矿口宽度和矿浆质量分数两个主要影响因素,利用遗传算法对BP神经网络进行优化,与未优化的BP神经网络相比,经遗传算法优化的BP神经网络具有更高的精度,预测误差也更小,其d_(50)平均绝对误差为0.7575,均方误差为0.7977,均方误差根为0.8931,平均绝对百分比误差为4.4838%;d_(90)平均绝对误差为0.7870,均方误差为0.8294,均方误差根为0.9107,平均绝对百分比误差为1.6658%。研究成果可为超细粉体的制备提供参考。 展开更多
关键词 遗传算法 BP神经网络 生石膏 超细磨 显著性 相关系数 预测精度
下载PDF
基于遗传算法优化BP神经网络的曝气量预测
9
作者 唐维 陶钰欣 +1 位作者 郝启文 庞中华 《控制工程》 CSCD 北大核心 2024年第10期1746-1752,共7页
针对城市污水处理厂生化池曝气量的冗余问题,从节能降耗角度出发,提出了一种精确预测生化池曝气量的方法。首先,对从山东某污水厂采集的数据做预处理;其次,经相关性分析,建立以进出水指标和历史曝气量为输入、以当前曝气量为输出的反向... 针对城市污水处理厂生化池曝气量的冗余问题,从节能降耗角度出发,提出了一种精确预测生化池曝气量的方法。首先,对从山东某污水厂采集的数据做预处理;其次,经相关性分析,建立以进出水指标和历史曝气量为输入、以当前曝气量为输出的反向传播(back propagation,BP)神经网络模型,并利用遗传算法优化BP神经网络的权值和阈值;最后,为了验证所提方法的有效性,将其与传统BP神经网络模型进行对比。实验结果表明,所提方法的均方根误差减小了39.88%,计算时间缩减了31.00%;且与实际测试数据相比,每月的曝气电费可节约892.80元。因此,所提方法对生化池曝气量的预测是有效和可行的。 展开更多
关键词 污水处理 精确曝气 神经网络 遗传算法 预测
下载PDF
基于神经网络的HEVC帧内预测组合快速算法
10
作者 范俊宇 宋立锋 《广东工业大学学报》 CAS 2024年第3期131-140,共10页
为了提升高效视频编码(High Efficiency Video Coding,HEVC)帧内编码的实时性能,本文提出的方法利用了引入偶数边长与步长的卷积核以及自注意力机制的轻量级卷积网络来预测编码树单元(Coding Tree Unit,CTU)的帧内划分结构,从而减少了... 为了提升高效视频编码(High Efficiency Video Coding,HEVC)帧内编码的实时性能,本文提出的方法利用了引入偶数边长与步长的卷积核以及自注意力机制的轻量级卷积网络来预测编码树单元(Coding Tree Unit,CTU)的帧内划分结构,从而减少了编码器对CTU进行四叉树递归遍历划分的编码时间。原始编码策略中粗模式决策通过基于残差经哈德曼变换的预测残差绝对值总和(Sum of Absolute Transformed Difference,SATD)的损失值来估计率失真优化过程中的率失真损失值来进行加速,但仍会耗费一定的编码时间。提出一种方法通过采样搜索的方式减少粗模式决策过程中计算的模式数,从35种模式降低到了18种模式,降低了粗模式决策过程中计算估计损失值的时间。由粗模式决策过程得到的较优的多个候选帧内模式来进行率失真优化,为了缩减粗模式决策需要计算的候选模式数,在候选模式列表中根据前后帧内预测角度模式的估计损失值的差距来筛选掉部分可能性较低的候选模式实现早停止决策,从而减少需要进行率失真优化的候选模式数量,进而减少率失真优化过程的计算时间。本文提出的算法在测试序列上平均实现78.15%的编码时间缩减,BD-PSNR为-0.168 d B,BD-RATE为3.49%。 展开更多
关键词 视频编码 神经网络 帧内预测 快速算法
下载PDF
基于改进灰狼算法优化双向长短时记忆神经网络的水冷壁壁温预测
11
作者 詹毅 冯磊华 +1 位作者 杨锋 钟信 《热力发电》 CAS CSCD 北大核心 2024年第1期188-196,共9页
提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型... 提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型的隐藏层数量、学习率和正则化参数以提高模型的预测精度,采用新疆某电厂的数据进行预测仿真,结果表明:改进后的算法预测精度更高,在机组升、降负荷时,均可以预测到壁温的变化趋势,模型的平均均方根误差相比于长短时记忆(LSTM)神经网络、BiLSTM模型分别降低了9.86%和3.69%,且可以提前预测到水冷壁壁温的超温情况,对于预防水冷壁超温有重要意义。 展开更多
关键词 水冷壁 壁温预测 双向长短时记忆神经网络 改进灰狼算法 自适应位置更新
下载PDF
二氧化氮浓度时空预测:一种区间二型直觉模糊神经网络方法
12
作者 赵亮 李梦威 +2 位作者 郑玉卿 崔贝贝 朱献超 《智能科学与技术学报》 CSCD 2024年第2期253-261,共9页
空气中二氧化氮浓度的高低对环境保护和公共健康具有重要影响。目前二氧化氮浓度预测方法在表征时空关联性方面存在不足。鉴于此,提出了新的使用区间二型直觉模糊神经网络时空预测二氧化氮浓度的方法。首先,阐述了该区间二型直觉模糊神... 空气中二氧化氮浓度的高低对环境保护和公共健康具有重要影响。目前二氧化氮浓度预测方法在表征时空关联性方面存在不足。鉴于此,提出了新的使用区间二型直觉模糊神经网络时空预测二氧化氮浓度的方法。首先,阐述了该区间二型直觉模糊神经网络框架,引入可变系数加权其隶属部分和非隶属部分的输出,并采用随机向量泛函链接神经网络作为规则后件;然后,为确定网络结构和参数,采用分层聚类算法得到模糊规则库,并通过最小二乘法优化网络后件的输出权值;最后,使用2018年1月至3月采集的北京市二氧化氮浓度真实数据进行数值验证。实验结果表明,与现有方法相比,该方法在短期和长期时空预测方面均取得了较高的预测精度和效率。 展开更多
关键词 二氧化氮浓度时空预测 区间二型直觉模糊神经网络 结构辨识 参数优化 最小二乘法
下载PDF
基于改进粒子群算法优化CNN-LSTM神经网络的传染病预测
13
作者 刘彩云 聂伟 +1 位作者 孟金葆 张涛 《湖州师范学院学报》 2024年第4期37-48,共12页
针对新型传染病发展趋势的预测精度问题,提出一种改进粒子群(PSO)算法优化卷积神经网络(CNN)与长短期记忆神经网络(LSTM)相结合的预测模型.首先,将原始粒子群优化算法中最优惯性权重的调整方式由迭代次数的线性关系转变为非线性关系,并... 针对新型传染病发展趋势的预测精度问题,提出一种改进粒子群(PSO)算法优化卷积神经网络(CNN)与长短期记忆神经网络(LSTM)相结合的预测模型.首先,将原始粒子群优化算法中最优惯性权重的调整方式由迭代次数的线性关系转变为非线性关系,并对学习因子进行线性更新,以寻找最优参数,从而更准确地模拟粒子群的社会学习能力,进而平衡算法的全局优化能力,提高收敛速度;其次,以发酵时间较长的新型冠状肺炎为研究对象,构建CNN-LSTM神经网络预测模型,利用CNN层提取其特征信息后降维作为LSTM层输入,并通过预测模块实现对研究对象的指标训练和预测,从而提高模型的预测精度;最后,与原始LSTM模型的预测误差,如均方根误差(RMSE)、平均绝对误差(MAE)、均方误差(MSE)等指标进行对比.研究结果表明,在训练集上,与原始LSTM模型相比,经过改进的PSO算法优化CNN-LSTM组合神经网络模型,其在RMSE、MAE和MSE三个指标上分别降低了73.0%、62.3%、92.7%;在测试集上,这3个指标分别降低了23.0%、29.8%、40.7%.这说明该模型具有更小的误差和较好的预测效果.该研究结果可为实现传染病传播趋势的精准预测提供新的思路和方法. 展开更多
关键词 长短期记忆神经网络 卷积神经网络 粒子群算法 传染病预测
下载PDF
基于粒子群算法优化BP神经网络的高低温试验箱温度预测
14
作者 彭白雪 陈清华 +1 位作者 王建刚 王皖楠 《环境技术》 2024年第5期215-223,共9页
为提高高低温试验箱内部温度预测精度,通过建立粒子群算法优化后的BP神经网络(PSO-BP)模型对高低温试验箱内工作区温度变化情况进行预测,并利用试验采集的有限点温度数据进行对比分析,为高低温试验箱内温度特性的分析计算提供理论和数... 为提高高低温试验箱内部温度预测精度,通过建立粒子群算法优化后的BP神经网络(PSO-BP)模型对高低温试验箱内工作区温度变化情况进行预测,并利用试验采集的有限点温度数据进行对比分析,为高低温试验箱内温度特性的分析计算提供理论和数据支持。结果表明PSO-BP网络取得最小训练误差为9.35×10^(-5),与BP神经网络相比,优化后的PSO-BP神经网络训练集和测试集拟合精度分别提高了1.09%和2.43%。BP网络和PSO-BP网络平均绝对误差(MAE)分别为1.480和0.753,均方根误差(RMSE)分别为1.979和1.842,综合表明PSOBP神经网络预测精准度更高,可有效获得高低温试验箱内连续完整的温度情况,提高了试验箱研发工作效率。 展开更多
关键词 高低温试验箱 粒子群算法 BP神经网络 温度预测
下载PDF
基于IWOA-SA-Elman神经网络的短期风电功率预测 被引量:2
15
作者 刘吉成 朱玺瑞 于晶 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期143-150,共8页
由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算... 由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算法和模拟退火组合优化的Elman神经网络短期风电功率预测模型,模型首先利用改进鲸鱼算法结合模拟退火策略获得高质量神经网络初始权值,接着引入正则化损失函数防止其过拟合,最后以西班牙瓦伦西亚某风电场陆上短期风电功率为研究对象,将该算法与BP、LSTM、Elman、WOA-Elman、IWOA-Elman 5种神经网络算法进行算法性能测试对比,结果表明IWOA-SA-Elman神经网络模型预测误差最小,验证了该算法的合理性和有效性。 展开更多
关键词 风电 ELMAN神经网络 预测 模拟退火 鲸鱼优化算法
下载PDF
基于IGA-BP神经网络的PEMFC供氢系统模型预测控制算法
16
作者 李岱泽 熊树生 +4 位作者 姜琦 吴占宽 焦志筱 程俊杰 宋雅楠 《现代机械》 2024年第5期100-106,共7页
对化石能源的过度使用导致了严重的环境问题和能源担忧。氢能作为一种清洁的能源,被认为是实现能源转型和可持续发展的重要资源。在此背景下,氢燃料电池作为一种将氢能高效转化为电能的技术,展现出了巨大潜力。本文以质子交换膜燃料电... 对化石能源的过度使用导致了严重的环境问题和能源担忧。氢能作为一种清洁的能源,被认为是实现能源转型和可持续发展的重要资源。在此背景下,氢燃料电池作为一种将氢能高效转化为电能的技术,展现出了巨大潜力。本文以质子交换膜燃料电池阳极供氢系统为研究对象,以氢气计量比和阴、阳极压强差为控制目标,设计了基于神经网络的模型预测控制算法。首先基于MATLAB/Simulink搭建了面向控制的燃料电池集总参数机理模型,通过实验验证了模型的可靠性;然后通过免疫遗传算法优化神经网络的学习过程,实现了对燃料电池系统状态的精确拟合与预测;最后,将离线训练的神经网络应用于模型预测控制器,并验证了控制算法的有效性。 展开更多
关键词 质子交换膜燃料电池 供氢系统 神经网络 免疫遗传算法 模型预测控制
下载PDF
基于北方苍鹰优化算法优化长短期记忆神经网络的光伏发电功率短期预测
17
作者 陈晓华 吴杰康 《山东电力技术》 2024年第10期10-17,共8页
为提高光伏发电功率短期预测的精度,提出一种结合时变滤波经验模态分解和北方苍鹰优化算法优化长短期记忆神经网络的组合预测方法。首先,利用时变滤波经验模态分解将光伏发电功率分解成多个固有模态函数分量。其次,利用北方苍鹰优化(nor... 为提高光伏发电功率短期预测的精度,提出一种结合时变滤波经验模态分解和北方苍鹰优化算法优化长短期记忆神经网络的组合预测方法。首先,利用时变滤波经验模态分解将光伏发电功率分解成多个固有模态函数分量。其次,利用北方苍鹰优化(northern goshawk optimization,NGO)算法优化长短期记忆(long short-term memory,LSTM)神经网络隐含单元的个数、最大训练次数和初始学习率,构建NGO-LSTM预测模型。最后,把每一个固有模态函数分量都输入到预测模型中进行预测,将所有固有模态函数分量的预测结果进行叠加便可得到光伏发电功率短期预测的结果。仿真结果表明,所提的预测模型可以有效提高光伏发电功率的预测精度。 展开更多
关键词 时变滤波经验模态分解 北方苍鹰优化算法 光伏发电功率 短期预测 长短期记忆神经网络
下载PDF
基于WOA-BP神经网络下马铃薯产量预测分析模型 被引量:2
18
作者 赵丙秀 董宁 《农机化研究》 北大核心 2024年第3期47-51,共5页
马铃薯是我国重要的粮食作物之一,营养丰富,用途广泛,是一种谷物、蔬菜和水果功能兼具的食物,其蛋白质含量远高于其他块茎类食物,且富含优质的氨基酸。马铃薯生育期短,在湖北平原、丘陵地区冬种春收适宜发展早熟品种,对于填补全国南北... 马铃薯是我国重要的粮食作物之一,营养丰富,用途广泛,是一种谷物、蔬菜和水果功能兼具的食物,其蛋白质含量远高于其他块茎类食物,且富含优质的氨基酸。马铃薯生育期短,在湖北平原、丘陵地区冬种春收适宜发展早熟品种,对于填补全国南北方鲜薯市场供应空档期具有重要意义。因此,马铃薯产量的高效预测对于制定生长期间的种植管理措施及相关决策具有重要意义。为此,针对传统BP神经网络在产量预测中存在精度低、鲁棒性差等问题,利用鲸鱼算法(Whale optimization algorithm,WOA)对BP神经网络模型进行优化。同时,基于湖北地区2009-2021年间田间物联网获取的气象因子(大气湿度、大气温度、降雨量)、田间水热因子及马铃薯产量,采用BP神经网络模型、GA-BP神经网络模型(遗传算法优化)及WOA-BP神经网络模型对所选地区马铃薯产量进行预测。研究结果表明:WOA-BP神经网络模型精度明显高于GA-BP神经网络模型及BP神经网络模型,R2达到0.9764,预测值与试验值之间拟合程度较高,表明基于WOA-BP神经网络模型可以更加科学、合理、准确地进行马铃薯产量预测。 展开更多
关键词 马铃薯 神经网络模型 产量预测 鲸鱼优化算法
下载PDF
基于遗传算法优化BP神经网络的沙漠砂混凝土强度预测
19
作者 朱文邦 郑秀梅 +2 位作者 杨增增 张大利 吕志栓 《混凝土》 CAS 北大核心 2024年第5期48-51,56,共5页
沙漠砂混凝土在工程建设中应用前需要做大量的试验进行验证,不仅会影响建设周期,还会消耗大量的建筑材料。针对沙漠砂混凝土强度受多种影响因素耦合作用,传统预测模型存在一定缺陷,借助全局搜索能力较强的遗传算法改进神经网络,输入层... 沙漠砂混凝土在工程建设中应用前需要做大量的试验进行验证,不仅会影响建设周期,还会消耗大量的建筑材料。针对沙漠砂混凝土强度受多种影响因素耦合作用,传统预测模型存在一定缺陷,借助全局搜索能力较强的遗传算法改进神经网络,输入层参数为水胶比、砂率、沙漠砂替代率、粉煤灰掺量、减水剂用量,建立遗传算法优化BP神经网络的沙漠砂混凝土强度预测模型。并通过实例验证,将BP神经网络预测的沙漠砂混凝土强度与遗传算法优化BP神经网络预测结果进行对比。结果表明:基于遗传算法优化BP神经网络的沙漠砂混凝土强度预测模型具有较好的操作性和预测精度,为提高沙漠砂混凝土强度预测精度开拓新的途径。 展开更多
关键词 沙漠砂混凝土 强度预测 遗传算法 BP神经网络
下载PDF
基于鹈鹕优化算法优化广义回归神经网络的电动汽车充电负荷短期预测
20
作者 陈晓华 吴杰康 +2 位作者 张勋祥 龙泳丞 王志平 《山东电力技术》 2024年第7期1-9,共9页
针对目前电动汽车充电负荷预测精度不足的问题,提出了一种结合互补集合经验模态分解和鹈鹕优化算法优化广义回归神经网络的组合预测方法。首先,利用互补集合经验模态分解将电动汽车充电负荷时间序列分解成多个固有模态函数分量和一个残... 针对目前电动汽车充电负荷预测精度不足的问题,提出了一种结合互补集合经验模态分解和鹈鹕优化算法优化广义回归神经网络的组合预测方法。首先,利用互补集合经验模态分解将电动汽车充电负荷时间序列分解成多个固有模态函数分量和一个残差分量。其次,对于分解后的固有模态分量容易出现冗杂信息,利用样本熵对分解后数值相近的固有模态分量进行相加重构,降低冗杂程度。最后,考虑广义回归神经网络的预测效果与平滑因子的数值有很大关系,利用鹈鹕优化算法优化广义回归神经网络的平滑因子,进而对电动汽车充电负荷进行短期预测。仿真表明,所提出的预测方法可以有效地提高电动汽车充电负荷的预测精度,具有较高的实用性。 展开更多
关键词 广义回归神经网络 鹈鹕优化算法 电动汽车充电负荷 短期预测 互补集合经验模态分解
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部