期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于极限学习机与模糊积分融合的机器人地面分类 被引量:1
1
作者 李强 寇建华 +1 位作者 徐贺 白冰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2017年第4期617-624,共8页
为了提高移动机器人地面分类的准确率,采用奇异值分解和功率谱密度估计两种方法对振动信号进行特征提取。针对极限学习机的隐层节点冗余问题,给出改进的算法,并采用改进的极限学习机对地面分类。针对模糊积分参数耗时和积分函数不确定... 为了提高移动机器人地面分类的准确率,采用奇异值分解和功率谱密度估计两种方法对振动信号进行特征提取。针对极限学习机的隐层节点冗余问题,给出改进的算法,并采用改进的极限学习机对地面分类。针对模糊积分参数耗时和积分函数不确定的问题,给出改进的方法,并基于2种特征采用改进的模糊积分对2个改进的极限学习机进行融合。在四轮移动机器人左前轮轮臂上安装三向加速度计和z向传声器,使之在沙、碎石、草、土、沥青地面上分别以5种速度行驶,采集车轮与地面相互作用的加速度和声压信号。根据改进的极限学习机和模糊积分融合算法,分别对每种速度下的5种地面进行分类,分类平均准确率为95.22%。实验验证了算法的有效性。 展开更多
关键词 移动机器人 地面分类 振动信号 极限学习机 模糊积分融合 奇异值分解 功率谱密度
下载PDF
基于张量的KFLD-SIFT与RVM模糊积分融合的人体行为识别方法 被引量:1
2
作者 肖迪 南雷光 《模式识别与人工智能》 EI CSCD 北大核心 2014年第8期713-719,共7页
针对人体行为识别领域中视频序列的大样本及多特征问题,提出一种基于张量的核Fisher非线性鉴别(KFLD)-尺度不变特征变换(SIFT)与相关向量机(RVM)模糊积分融合的人体行为识别方法.该方法首先通过预处理视频序列得到二值视频,并采用三阶... 针对人体行为识别领域中视频序列的大样本及多特征问题,提出一种基于张量的核Fisher非线性鉴别(KFLD)-尺度不变特征变换(SIFT)与相关向量机(RVM)模糊积分融合的人体行为识别方法.该方法首先通过预处理视频序列得到二值视频,并采用三阶张量表示.然后针对大样本特征提出KFLD-SIFT局部特征提取算法,对不同初始尺度下的关键点周围的多特征降维,同时提出RVM模糊积分融合算法进行行为分类.最后应用4种经典评价指标及计算得到的平均识别率对比分析文中方法与其他相关方法的识别效果,数据采用KTH人体行为数据库中的视频,并采用三重交叉方法验证和测试.实验表明文中方法对多种行为取得较好的识别效果,平均识别率比其他主流方法至少提高2.3%. 展开更多
关键词 张量 核Fisher非线性鉴别( KFLD) 尺度不变特征变换( SIFT) 相关向量机(RVM) 模糊积分融合
下载PDF
基于模糊积分融合的复杂场景下人体行为识别 被引量:2
3
作者 吴秋霞 邓飞其 康文雄 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第1期146-151,共6页
利用局部特征描述符来表征视频中一系列关键点的方法已被广泛应用于识别复杂场景下的人体行为,但这些关键点之间隐含的结构化的位置关系目前并未得到有效表征.为此,文中首先采用尺度不变的关键点的检测子和3D-Harris检测子检测视频样本... 利用局部特征描述符来表征视频中一系列关键点的方法已被广泛应用于识别复杂场景下的人体行为,但这些关键点之间隐含的结构化的位置关系目前并未得到有效表征.为此,文中首先采用尺度不变的关键点的检测子和3D-Harris检测子检测视频样本中的局部关键点,结合已有的局部特征描述符和形状描述符来表征关键点位置之间结构化的信息,然后利用bag-of-features模型来计算这些特征的分布,再通过模糊积分对这些局部特征进行有效融合,并给出具体的算法描述.在具有复杂场景的YouTube数据集下的实验表明,所提出的局部特征表征方法能够更有效地表征复杂场景中的人体行为,模糊积分融合方法可有效进行决策层融合. 展开更多
关键词 人体行为识别 形状描述符 局部特征 模糊积分融合
下载PDF
A novel fuzzy sensor fusion algorithm 被引量:1
4
作者 FU Hua YANG Yi-kui MAKe LIU Yu-jia 《Journal of Coal Science & Engineering(China)》 2011年第4期457-460,共4页
A novel fusion algorithm was given based on fuzzy similarity and fuzzy integral theory. First, it calculated the fuzzy similarity among a certain sensor's measurement values and the multiple sensors' objective predi... A novel fusion algorithm was given based on fuzzy similarity and fuzzy integral theory. First, it calculated the fuzzy similarity among a certain sensor's measurement values and the multiple sensors' objective prediction values to determine the importance weight of each sensor and realize multi-sensor data fusion. Then according to the determined importance weight, an intelligent fusion system based on fuzzy integral theory was given, which can solve FEI-DEO and DEI-DEO fusion problems and realize the decision fusion. Simulation results were proved that fuzzy integral algorithm has enhanced the capability of handling the uncertain information and improved the intelligence degrees 展开更多
关键词 fuzzy similarity fuzzy integral data fusion decision fusion MULTI-SENSOR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部