期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种结合紧致性与分离性的模糊联合聚类算法 被引量:1
1
作者 刘永利 段天毅 杨立身 《河南理工大学学报(自然科学版)》 CAS 北大核心 2017年第5期85-88,94,共5页
为了同时对数据对象和特征进行聚类分析以提高聚类准确率,在模糊紧致性和分离性算法(fuzzy compactness and separation,FCS)基础上,提出一种结合类内紧致性和类间分离性的模糊联合聚类算法(fuzzy compactness and separation co-cluste... 为了同时对数据对象和特征进行聚类分析以提高聚类准确率,在模糊紧致性和分离性算法(fuzzy compactness and separation,FCS)基础上,提出一种结合类内紧致性和类间分离性的模糊联合聚类算法(fuzzy compactness and separation co-clustering,FCSCC)。该算法在FCS的基础上增加了对特征维度的隶属度关系与熵最大化原理,能够在数据对象和特征2个维度上同时聚类。为验证该算法的有效性,另选择了3种算法在5个数据集上进行了对比实验,结果表明,FCSCC算法的聚类准确率高于其他3种算法。 展开更多
关键词 模糊联合聚类算法 紧致性 分离性
下载PDF
基于最大熵模糊聚类的快速多目标跟踪算法研究 被引量:9
2
作者 陈晓 李亚安 +1 位作者 蔚婧 李余兴 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第4期629-634,共6页
为了提高杂波环境中多目标跟踪的实时性和精确性,利用最大熵数据模糊聚类方法得到的模糊隶属度表示目标与量测之间的关联概率,同时分析了公共量测对目标的影响,引入影响因子重建互联概率矩阵,结合概率数据关联算法实现多目标的状态估计... 为了提高杂波环境中多目标跟踪的实时性和精确性,利用最大熵数据模糊聚类方法得到的模糊隶属度表示目标与量测之间的关联概率,同时分析了公共量测对目标的影响,引入影响因子重建互联概率矩阵,结合概率数据关联算法实现多目标的状态估计。该算法避免了对确认矩阵的拆分,解决了联合概率数据关联算法随着目标和回波数目增加而导致的计算量爆炸性增长问题。针对不同杂波密度环境下的临近平行目标和小角度交叉目标的跟踪进行了仿真分析,仿真结果表明:最大熵模糊聚类联合概率数据关联算法是一种有效的快速数据关联算法,在密集杂波环境中跟踪性能依然优于联合概率数据关联算法和经验联合概率数据关联算法,在一定程度上可以避免航迹融合。 展开更多
关键词 多目标跟踪 联合概率数据关联 经验联合概率数据关联 最大熵模糊联合概率数据关联
下载PDF
FCCM算法中基于划分熵的参数优选方法 被引量:2
3
作者 刘永利 付丽丽 《河南理工大学学报(自然科学版)》 CAS 北大核心 2016年第2期248-253,273,共7页
针对在FCCM及其改进算法中,模糊控制参数Tu往往采用经验值,或者通过多次实验选取最佳的Tu值。在考察了模糊控制参数Tu对于聚类结果的影响和在使用划分熵的变化来衡量聚类结果的明晰程度的基础上,引入隶属度矩阵的平均方差来对模糊控制参... 针对在FCCM及其改进算法中,模糊控制参数Tu往往采用经验值,或者通过多次实验选取最佳的Tu值。在考察了模糊控制参数Tu对于聚类结果的影响和在使用划分熵的变化来衡量聚类结果的明晰程度的基础上,引入隶属度矩阵的平均方差来对模糊控制参数Tu的取值进行限制,通过约束聚类的模糊程度,提出一种基于划分熵的参数优选方法。数据实验表明,使用该方法自动确定的参数Tu可减少直接使用经验值或多次实验选取最佳值时的随机性和偶然性,帮助FCCM算法获得更加稳定的聚类结果。 展开更多
关键词 模糊联合聚类 模糊控制参数 划分熵 算法
下载PDF
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
4
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部