期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于模糊聚类技术的区域生态功能区划研究——以三峡库区万州为例 被引量:2
1
作者 秦燕 赵彦伟 杨志峰 《应用基础与工程科学学报》 EI CSCD 2009年第S1期74-81,共8页
生态功能区划是区域生态适应性与差异性管理的基础.界定了生态功能区划的基本程序,建立了包括恒定和波动两类指标的区划指标体系,提出了以模糊聚类为主体的区划方法.以三峡库区万州为例,基于GIS平台,划分了一级、二级生态功能区,并提出... 生态功能区划是区域生态适应性与差异性管理的基础.界定了生态功能区划的基本程序,建立了包括恒定和波动两类指标的区划指标体系,提出了以模糊聚类为主体的区划方法.以三峡库区万州为例,基于GIS平台,划分了一级、二级生态功能区,并提出具有针对性的生态调控对策,为区域生态系统管理提供依据. 展开更多
关键词 生态功能区划 模糊聚类技术 GIS 三峡库区 万州
下载PDF
超像素有偏观测模糊聚类的乳腺超声图像分割 被引量:1
2
作者 孟爽 王辉 +3 位作者 谢蓄芬 邹念育 李博文 曹帆 《中国医学物理学杂志》 CSCD 2017年第7期693-697,共5页
图像分割在医学超声图像的定量、定性分析中均扮演着十分重要的作用,并直接影响到后续的分析、处理工作。乳腺组织的特殊性导致了其超声图像纹理复杂、噪声明显、对比度较低,临床应用难以准确自动分割,诊断较依赖于人工观测。针对此问... 图像分割在医学超声图像的定量、定性分析中均扮演着十分重要的作用,并直接影响到后续的分析、处理工作。乳腺组织的特殊性导致了其超声图像纹理复杂、噪声明显、对比度较低,临床应用难以准确自动分割,诊断较依赖于人工观测。针对此问题提出一种基于超像素和模糊聚类技术相结合的图像分割算法。采用紧密度自适应的简单线性迭代聚类产生超像素,实现初步划分,减小计算量;计算各超像素的特征向量组成集合;采用聚类有效性分析和有偏观测模糊C均值聚类将特征向量分类,实现目标区域的有效分割。采用此方法对20帧乳腺超声图像进行图像分割实验,采用基于区域的评价准则对分割结果进行量化评估,评估结果表明真阳性为92.87%±2.98%,假阳性为11.05%±2.75%,相似性为83.39%±3.64%,取得了较好的分割结果。对乳腺肿块超声诊断的辅助方法研究具有探索意义。 展开更多
关键词 乳腺 超声 图像分割 超像素 模糊聚类技术
下载PDF
基于BP神经网络的风功率预测 被引量:5
3
作者 李海玲 《现代信息科技》 2021年第15期119-121,124,共4页
随着世界能源危机的凸显,风力发电逐渐成为研究热点。但其非持续性和随机性,使得风力发电在安全性、稳定性以及供电质量上有待提高。目前采用神经网络预测电网各节点短期功率并予以解决,但预测模型网络结构单一,使得预测结果受样本数据... 随着世界能源危机的凸显,风力发电逐渐成为研究热点。但其非持续性和随机性,使得风力发电在安全性、稳定性以及供电质量上有待提高。目前采用神经网络预测电网各节点短期功率并予以解决,但预测模型网络结构单一,使得预测结果受样本数据影响较大。经过预测模型的改进,使用模糊聚类选取相似日后再进行预测,可提高预测精度。通过仿真实验证明,该种改进使得预测结果相对误差在5%以内,具有较好的预测精度。 展开更多
关键词 风力发电 模糊聚类技术 BP神经网络 风功率预测
下载PDF
3-Phase Fault Finding in Oil Field MV Distribution Network Using Fuzzy Clustering Techniques
4
作者 Muhammad M.A.S. Mahmoud 《Journal of Energy and Power Engineering》 2013年第1期155-161,共7页
This paper studies an existing 13.8 kilovolt distribution network which, serves an oil production field spread over an area of approximately 60 kilometers square, in order to locate any fault that may occur anywhere i... This paper studies an existing 13.8 kilovolt distribution network which, serves an oil production field spread over an area of approximately 60 kilometers square, in order to locate any fault that may occur anywhere in the network using fuzzy c-mean classification techniques. In addition, Sections 5 and 6 introduce two different methods for normalizing data and selecting the optimum number of clusters in order to classify data. Results and conclusions are given to show the feasibility for the suggested fault location method. Suggestion for future related research has been provided in Section 8. 展开更多
关键词 Fault finding fault location distribution network fuzzy clustering applications.
下载PDF
Research on Application of Data Mining in Virtual Community of Foreign Language Learning
5
作者 GAO Liuxin 《International English Education Research》 2018年第1期7-9,共3页
The construction of virtual community in foreign language learning is a comprehensive foreign language learning environment integrated with foreign language vocabulary database construction and vocabulary retrieval, c... The construction of virtual community in foreign language learning is a comprehensive foreign language learning environment integrated with foreign language vocabulary database construction and vocabulary retrieval, combining the virtual reality technology to construct the language environment of foreign language learning. The virtual community of foreign language leaming can improve the sense of language authenticity in foreign language learning and improve the quality of foreign language teaching. A method of building a virtual community for foreign language learning is proposed based on data mining technology, data acquisition and feature preprocessing model for building semantic vocabulary of foreign language learning is constructed, the linguistic environment characteristics of the semantic vocabulary data of foreign language learning is analyzed, and the semantic noumenon structure model is obtained. Fuzzy clustering method is used for vocabulary clustering and comprehensive retrieval in the virtual community of foreign language learning, the performance of vocabulary classification in foreign language learning is improved, the adaptive semantic information fusion method is used to realize the vocabulary data mining in the virtual community of foreign language learning, information retrieval and access scheduling for virtual communities in foreign language learning are realized based on data mining results. The simulation results show that the accuracy of foreign language vocabulary retrieval is good, improve the efficiency of foreign language learning. 展开更多
关键词 Data mining Foreign language learning Virtual community Language environment Fuzzy clustering
下载PDF
Theoretical Research on Novel Data Mining Algorithm based on Fuzzy Clustering Theory and Deep Neural Network
6
作者 Ye Li 《International Journal of Technology Management》 2015年第7期109-111,共3页
With the progress of computer technology, data mining has become a hot research area in the computer science community. In this paper, we undertake theoretical research on the novel data mining algorithm based on fuzz... With the progress of computer technology, data mining has become a hot research area in the computer science community. In this paper, we undertake theoretical research on the novel data mining algorithm based on fuzzy clustering theory and deep neural network. The focus of data mining in seeking the visualization methods in the process of data mining, knowledge discovery process can be users to understand, to facilitate human-computer interaction in knowledge discovery process. Inspired by the brain structure layers, neural network researchers have been trying to multilayer neural network research. The experiment result shows that out algorithm is effective and robust. 展开更多
关键词 Fuzzy Clustering Data Mining Deep Neural Network Machine Learning.
下载PDF
基于客观信息熵的多因素权重分配方法 被引量:66
7
作者 黄定轩 《系统工程理论方法应用》 2003年第4期321-324,共4页
多因素问题研究中各因素的权重分配始终是多因素问题研究的一个重点。借助模糊聚类技术和粗糙集理论提出了一个基于客观信息熵的多因素权重分配方法。该方法首先将大量数据进行模糊聚类,然后应用粗糙集理论中的信息熵知识客观地从实际... 多因素问题研究中各因素的权重分配始终是多因素问题研究的一个重点。借助模糊聚类技术和粗糙集理论提出了一个基于客观信息熵的多因素权重分配方法。该方法首先将大量数据进行模糊聚类,然后应用粗糙集理论中的信息熵知识客观地从实际数据中确定各因素的权重。 展开更多
关键词 客观信息熵 多因素权重分配 模糊聚类技术 粗糙集
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部