This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devic...This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.展开更多
Considering the control difficulties of a hydro-viscous trol algorithm was derived. A fuzzy-immune PID controller was soft start (HVSS) device of a belt conveyor, a fuzzy-immune con- designed based on immune feedbac...Considering the control difficulties of a hydro-viscous trol algorithm was derived. A fuzzy-immune PID controller was soft start (HVSS) device of a belt conveyor, a fuzzy-immune con- designed based on immune feedback regulations and adaptability of the fuzzy logic inference. Using MATLAB software, we simulated the controller and compared the HVSS device with a conven- tional PID controller and a fuzzy PID controller. The simulation results show that the controller is not only very reliable as a PID controller, robust and requires only a short adjustment time of fuzzy control, but possesses also capacity of global optimization of the immune algorithm. To verify our theoretical analysis and simulation, a HVSS test-bed was developed. The experimental results demonstrate that the fuzzy-immune PID controller managed to start the belt conveyor softly and to follow an S-shaped curve while the output speed correctly followed the preset speed with only small fluctuations in speed.展开更多
The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. F...The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. Furthermore, the algorithm and structure of the FNN areintroduced. In order to diagnose the faults of nuclear power plant, the FNN is applied to thenuclear power planl, and the intelligence fault diagnostic system of the nuclear power plant isbuilt based on the FNN . The fault symptoms and the possibility of the inverted U-tube breakaccident of steam generator are discussed. In order to test the system' s validity, the invertedU-tube break accident of steam generator is used as an example and many simulation experiments areperformed. The test result shows that the FNN can identify the fault.展开更多
Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffi...Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffic. Even though all vessels are equipped with modern navigation devices, the accidents are reported caused by various reasons and mainly by human factor according to investigation. We propose an effective and efficient composition collision risk calculation method for finding the collision probability and avoiding the collision between ships in possible collision situations. The proposed composition collision risk calculation method at ship's position using combination of fuzzy and fuzzy comprehensive evaluation methods. The algorithm is straightforward to implement and is shown to be effective in automatic ship handling for ships involved in complex navigation situations. Experiments are carried out with indigenous data and the results show the effectiveness of the proposed approach.展开更多
An adaptive neuro-fuzzy control is investigated for a class of non-affine nonlinear systems.To do so,rigorous description and quantification of the approximation error of the neuro-fuzzy controller are firstly discuss...An adaptive neuro-fuzzy control is investigated for a class of non-affine nonlinear systems.To do so,rigorous description and quantification of the approximation error of the neuro-fuzzy controller are firstly discussed.Applying this result and Lyapunov stability theory,a novel updating algorithm to adapt the weights,centers,and widths of the neuro-fuzzy controller is presented.Consequently,the proposed design method is able to guarantee the stability of the closed-loop system and the convergence of the tracking error.Simulation results illustrate the effectiveness of the proposed adaptive neuro-fuzzy control scheme.展开更多
Robot learning in unstructured environments has been proved to be an extremely challenging problem, mainly because of many uncertainties always present in the real world. Human beings, on the other hand, seem to cope ...Robot learning in unstructured environments has been proved to be an extremely challenging problem, mainly because of many uncertainties always present in the real world. Human beings, on the other hand, seem to cope very well with uncertain and unpredictable environments, often relying on perception-based information. Furthermore, humans beings can also utilize perceptions to guide their learning on those parts of the perception-action space that are actually relevant to the task. Therefore, we conduct a research aimed at improving robot learning through the incorporation of both perception-based and measurement-based information. For this reason, a fuzzy reinforcement learning (FRL) agent is proposed in this paper. Based on a neural-fuzzy architecture, different kinds of information can be incorporated into the FRL agent to initialise its action network, critic network and evaluation feedback module so as to accelerate its learning. By making use of the global optimisation capability of GAs (genetic algorithms), a GA-based FRL (GAFRL) agent is presented to solve the local minima problem in traditional actor-critic reinforcement learning. On the other hand, with the prediction capability of the critic network, GAs can perform a more effective global search. Different GAFRL agents are constructed and verified by using the simulation model of a physical biped robot. The simulation analysis shows that the biped learning rate for dynamic balance can be improved by incorporating perception-based information on biped balancing and walking evaluation. The biped robot can find its application in ocean exploration, detection or sea rescue activity, as well as military maritime activity.展开更多
基金supported by Borujerd Branch,Islamic Azad University Iran
文摘This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.
文摘Considering the control difficulties of a hydro-viscous trol algorithm was derived. A fuzzy-immune PID controller was soft start (HVSS) device of a belt conveyor, a fuzzy-immune con- designed based on immune feedback regulations and adaptability of the fuzzy logic inference. Using MATLAB software, we simulated the controller and compared the HVSS device with a conven- tional PID controller and a fuzzy PID controller. The simulation results show that the controller is not only very reliable as a PID controller, robust and requires only a short adjustment time of fuzzy control, but possesses also capacity of global optimization of the immune algorithm. To verify our theoretical analysis and simulation, a HVSS test-bed was developed. The experimental results demonstrate that the fuzzy-immune PID controller managed to start the belt conveyor softly and to follow an S-shaped curve while the output speed correctly followed the preset speed with only small fluctuations in speed.
文摘The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. Furthermore, the algorithm and structure of the FNN areintroduced. In order to diagnose the faults of nuclear power plant, the FNN is applied to thenuclear power planl, and the intelligence fault diagnostic system of the nuclear power plant isbuilt based on the FNN . The fault symptoms and the possibility of the inverted U-tube breakaccident of steam generator are discussed. In order to test the system' s validity, the invertedU-tube break accident of steam generator is used as an example and many simulation experiments areperformed. The test result shows that the FNN can identify the fault.
基金supported by ETRI through Maritime Safety & Maritime Traffic Management R&D Program of the MOF/KIMST (2009403, Development of Next Generation VTS for Maritime Safety)supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. 2011-0015009)
文摘Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffic. Even though all vessels are equipped with modern navigation devices, the accidents are reported caused by various reasons and mainly by human factor according to investigation. We propose an effective and efficient composition collision risk calculation method for finding the collision probability and avoiding the collision between ships in possible collision situations. The proposed composition collision risk calculation method at ship's position using combination of fuzzy and fuzzy comprehensive evaluation methods. The algorithm is straightforward to implement and is shown to be effective in automatic ship handling for ships involved in complex navigation situations. Experiments are carried out with indigenous data and the results show the effectiveness of the proposed approach.
基金Shanghai Leading Academic Discipline Project,Project Number T0103Shanghai Municipal Education Commission Project,Project Number:05AZ22
文摘An adaptive neuro-fuzzy control is investigated for a class of non-affine nonlinear systems.To do so,rigorous description and quantification of the approximation error of the neuro-fuzzy controller are firstly discussed.Applying this result and Lyapunov stability theory,a novel updating algorithm to adapt the weights,centers,and widths of the neuro-fuzzy controller is presented.Consequently,the proposed design method is able to guarantee the stability of the closed-loop system and the convergence of the tracking error.Simulation results illustrate the effectiveness of the proposed adaptive neuro-fuzzy control scheme.
文摘Robot learning in unstructured environments has been proved to be an extremely challenging problem, mainly because of many uncertainties always present in the real world. Human beings, on the other hand, seem to cope very well with uncertain and unpredictable environments, often relying on perception-based information. Furthermore, humans beings can also utilize perceptions to guide their learning on those parts of the perception-action space that are actually relevant to the task. Therefore, we conduct a research aimed at improving robot learning through the incorporation of both perception-based and measurement-based information. For this reason, a fuzzy reinforcement learning (FRL) agent is proposed in this paper. Based on a neural-fuzzy architecture, different kinds of information can be incorporated into the FRL agent to initialise its action network, critic network and evaluation feedback module so as to accelerate its learning. By making use of the global optimisation capability of GAs (genetic algorithms), a GA-based FRL (GAFRL) agent is presented to solve the local minima problem in traditional actor-critic reinforcement learning. On the other hand, with the prediction capability of the critic network, GAs can perform a more effective global search. Different GAFRL agents are constructed and verified by using the simulation model of a physical biped robot. The simulation analysis shows that the biped learning rate for dynamic balance can be improved by incorporating perception-based information on biped balancing and walking evaluation. The biped robot can find its application in ocean exploration, detection or sea rescue activity, as well as military maritime activity.