Fuzzy association rules (FARs) can be powerful in assessing regional soil quality, a critical step prior to land planning and utilization; however, traditional FARs mined from soil quality database, ignoring the impor...Fuzzy association rules (FARs) can be powerful in assessing regional soil quality, a critical step prior to land planning and utilization; however, traditional FARs mined from soil quality database, ignoring the importance variability of the rules, can be redundant and far from optimal. In this study, we developed a method applying different weights to traditional FARs to improve accuracy of soil quality assessment. After the FARs for soil quality assessment were mined, redundant rules were eliminated according to whether the rules were significant or not in reducing the complexity of the soil quality assessment models and in improving the comprehensibility of FARs. The global weights, each representing the importance of a FAR in soil quality assessment, were then introduced and refined using a gradient descent optimization method. This method was applied to the assessment of soil resources conditions in Guangdong Province, China. The new approach had an accuracy of 87%, when 15 rules were mined, as compared with 76% from the traditional approach. The accuracy increased to 96% when 32 rules were mined, in contrast to 88% from the traditional approach. These results demonstrated an improved comprehensibility of FARs and a high accuracy of the proposed method.展开更多
In order to improve the efficiency of learning the triangular membership functions( TMFs) for mining fuzzy association rule( FAR) in dynamic database,a single-pass fuzzy c means( SPFCM)algorithm is combined with the r...In order to improve the efficiency of learning the triangular membership functions( TMFs) for mining fuzzy association rule( FAR) in dynamic database,a single-pass fuzzy c means( SPFCM)algorithm is combined with the real-coded CHC genetic model to incrementally learn the TMFs. The cluster centers resulting from SPFCM are regarded as the midpoint of TMFs. The population of CHC is generated randomly according to the cluster center and constraint conditions among TMFs. Then a new population for incremental learning is composed of the excellent chromosomes stored in the first genetic process and the chromosomes generated based on the cluster center adjusted by SPFCM. The experiments on real datasets show that the number of generations converging to the solution of the proposed approach is less than that of the existing batch learning approach. The quality of TMFs generated by the approach is comparable to that of the batch learning approach. Compared with the existing incremental learning strategy,the proposed approach is superior in terms of the quality of TMFs and time cost.展开更多
基金Supported by the National Natural Science Foundation of China (Nos.40671145 and 60573115)the Provincial Natural Science Foundation of Guangdong,China (Nos.04300504 and 05006623)
文摘Fuzzy association rules (FARs) can be powerful in assessing regional soil quality, a critical step prior to land planning and utilization; however, traditional FARs mined from soil quality database, ignoring the importance variability of the rules, can be redundant and far from optimal. In this study, we developed a method applying different weights to traditional FARs to improve accuracy of soil quality assessment. After the FARs for soil quality assessment were mined, redundant rules were eliminated according to whether the rules were significant or not in reducing the complexity of the soil quality assessment models and in improving the comprehensibility of FARs. The global weights, each representing the importance of a FAR in soil quality assessment, were then introduced and refined using a gradient descent optimization method. This method was applied to the assessment of soil resources conditions in Guangdong Province, China. The new approach had an accuracy of 87%, when 15 rules were mined, as compared with 76% from the traditional approach. The accuracy increased to 96% when 32 rules were mined, in contrast to 88% from the traditional approach. These results demonstrated an improved comprehensibility of FARs and a high accuracy of the proposed method.
基金Supported by the National Natural Science Foundation of China(No.61301245,U1533104)
文摘In order to improve the efficiency of learning the triangular membership functions( TMFs) for mining fuzzy association rule( FAR) in dynamic database,a single-pass fuzzy c means( SPFCM)algorithm is combined with the real-coded CHC genetic model to incrementally learn the TMFs. The cluster centers resulting from SPFCM are regarded as the midpoint of TMFs. The population of CHC is generated randomly according to the cluster center and constraint conditions among TMFs. Then a new population for incremental learning is composed of the excellent chromosomes stored in the first genetic process and the chromosomes generated based on the cluster center adjusted by SPFCM. The experiments on real datasets show that the number of generations converging to the solution of the proposed approach is less than that of the existing batch learning approach. The quality of TMFs generated by the approach is comparable to that of the batch learning approach. Compared with the existing incremental learning strategy,the proposed approach is superior in terms of the quality of TMFs and time cost.