Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rou...Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rough calculation. As a result, there is a sharp transition between two modules which create doubts. So, in this paper the proposed weights technique was applied for linguistic criteria. Then by using the fuzzy inference system and the multi-variable regression analysis, the accurate RMR is predicted. Before the performing of regression analysis, sensitivity analysis was applied for each of Bieniawski parameters. In this process, the best function was selected among linear, logarithmic, exponential and inverse func- tions and finally it was applied in the regression analysis for construction of a predictive equation. From the constructed regression equation the relative importance of the input parameters can also be observed. It should be noted that joint condition was identified as the most important effective parameter upon RMR. Finally, fuzzy and regression models were validated with the test datasets and it was found that the fuzzy model predicts more accurately RMR than reression models.展开更多
This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-E...This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method,this research has considered the tunnel's geometric,strength,and operational factors as the dependent variables.At first,multiple regression(MR) method was used to propose equations based on various parameters.The results indicated the dependency of surface settlement on many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of poor accuracy.As such,adaptive neuro-fuzzy inference system(ANFIS),was used to evaluate its capabilities in terms of predicting surface settlement.Among generated ANFIS models,the model with all input parameters considered produced the best prediction,so as its associated R^2 in the test phase was obtained to be 0.957.The equations and models in which operational factors were taken into consideration gave better prediction results indicating larger relative effect of such factors.For sensitivity analysis of ANFIS model,cosine amplitude method(CAM) was employed; among other dependent variables,fill factor of grouting(n) and grouting pressure(P) were identified as the most affecting parameters.展开更多
The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have...The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have complicated structure, direct determination of this parameter takes time, spends expenditure and requires accuracy. On the other hand, there are no precise equations for indirect determination of it; most of them are empirical. By using data sets of several dams of Iran and neuro-genetic, adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP) methods, models are rendered for prediction of shear wave velocity in limestone. Totally, 516 sets of data has been used for modeling. From these data sets, 413 ones have been utilized for building the intelligent model, and 103 have been used for their performance evaluation. Compressional wave velocity (Vp), density (7) and porosity (.n), were considered as input parameters. Respectively, the amount of R for neuro-genetic and ANFIS networks was 0.959 and 0.963. In addition, by using GEP, three equations are obtained; the best of them has 0.958R. ANFIS shows the best prediction results, whereas GEP indicates proper equations. Because these equations have accuracy, they could be used for prediction of shear wave velocity for limestone in the future.展开更多
文摘Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rough calculation. As a result, there is a sharp transition between two modules which create doubts. So, in this paper the proposed weights technique was applied for linguistic criteria. Then by using the fuzzy inference system and the multi-variable regression analysis, the accurate RMR is predicted. Before the performing of regression analysis, sensitivity analysis was applied for each of Bieniawski parameters. In this process, the best function was selected among linear, logarithmic, exponential and inverse func- tions and finally it was applied in the regression analysis for construction of a predictive equation. From the constructed regression equation the relative importance of the input parameters can also be observed. It should be noted that joint condition was identified as the most important effective parameter upon RMR. Finally, fuzzy and regression models were validated with the test datasets and it was found that the fuzzy model predicts more accurately RMR than reression models.
文摘This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method,this research has considered the tunnel's geometric,strength,and operational factors as the dependent variables.At first,multiple regression(MR) method was used to propose equations based on various parameters.The results indicated the dependency of surface settlement on many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of poor accuracy.As such,adaptive neuro-fuzzy inference system(ANFIS),was used to evaluate its capabilities in terms of predicting surface settlement.Among generated ANFIS models,the model with all input parameters considered produced the best prediction,so as its associated R^2 in the test phase was obtained to be 0.957.The equations and models in which operational factors were taken into consideration gave better prediction results indicating larger relative effect of such factors.For sensitivity analysis of ANFIS model,cosine amplitude method(CAM) was employed; among other dependent variables,fill factor of grouting(n) and grouting pressure(P) were identified as the most affecting parameters.
文摘The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have complicated structure, direct determination of this parameter takes time, spends expenditure and requires accuracy. On the other hand, there are no precise equations for indirect determination of it; most of them are empirical. By using data sets of several dams of Iran and neuro-genetic, adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP) methods, models are rendered for prediction of shear wave velocity in limestone. Totally, 516 sets of data has been used for modeling. From these data sets, 413 ones have been utilized for building the intelligent model, and 103 have been used for their performance evaluation. Compressional wave velocity (Vp), density (7) and porosity (.n), were considered as input parameters. Respectively, the amount of R for neuro-genetic and ANFIS networks was 0.959 and 0.963. In addition, by using GEP, three equations are obtained; the best of them has 0.958R. ANFIS shows the best prediction results, whereas GEP indicates proper equations. Because these equations have accuracy, they could be used for prediction of shear wave velocity for limestone in the future.