A cooperative system of a fuzzy logic model and a fuzzy neural network(CSFLMFNN)is proposed,in which a fuzzy logic model is acquired from domain experts and a fuzzy neural network is generated and prewired according t...A cooperative system of a fuzzy logic model and a fuzzy neural network(CSFLMFNN)is proposed,in which a fuzzy logic model is acquired from domain experts and a fuzzy neural network is generated and prewired according to the model.Then PSO-CSFLMFNN is constructed by introducing particle swarm optimization(PSO)into the cooperative system instead of the commonly used evolutionary algorithms to evolve the prewired fuzzy neural network.The evolutionary fuzzy neural network implements accuracy fuzzy inference without rule matching.PSO-CSFLMFNN is applied to the intelligent fault diagnosis for a petrochemical engineering equipment,in which the cooperative system is proved to be effective.It is shown by the applied results that the performance of the evolutionary fuzzy neural network outperforms remarkably that of the one evolved by genetic algorithm in the convergence rate and the generalization precision.展开更多
Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple ...Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple Fuzzy ARTMAP with Dynamic Decay Adjustment(PMFAMDDA),for accurate discrimination between normal and faulty operating conditions of a Circulating Water(CW)system in a power generation plant is proposed.The decisions of PMFAMDDA are reached through a probabilistic plurality voting strategy that is in agreement with the Bayesian theorem.The results of the proposed PMFAMDDA model are compared with those from an ensemble of Probabilistic Multiple Fuzzy ARTMAP(PMFAM)classifiers.The outcomes reveal that PMFAMDDA,in general,outperforms PMFAM in discriminating operating conditions of the CW system.展开更多
A kind of fault diagnosis system of molten carbonate fuel cell (MCFC) stack is proposed in this paper. It is composed of a fuzzy neural network (FNN) and a fault diagnosis element. FNN is able to deal with the informa...A kind of fault diagnosis system of molten carbonate fuel cell (MCFC) stack is proposed in this paper. It is composed of a fuzzy neural network (FNN) and a fault diagnosis element. FNN is able to deal with the information of the expert knowledge and the experiment data efficiently. It also has the ability to approximate any smooth system. FNN is used to identify the fault diagnosis model of MCFC stack. The fuzzy fault decision element can diagnose the state of the MCFC generating system, normal or fault, and can decide the type of the fault based on the outputs of FNN model and the MCFC system. Some simulation experiment results are demonstrated in this paper.展开更多
Brain tumor is a major cause of an increased transient between children and adults. This article proposes an improved method based on magnetic resonance (MRI) brain imaging and image segmentation. Automated classifi...Brain tumor is a major cause of an increased transient between children and adults. This article proposes an improved method based on magnetic resonance (MRI) brain imaging and image segmentation. Automated classification is encouraged by the need for high accuracy in dealing with a human life. Detection of brain tumor is a challenging problem due to the high diversity in tumor appearance and ambiguous tumor boundaries. MRI images are chosen for the detection of brain tumors as they are used in the determination of soft tissues. First, image preprocessing is used to improve image quality. Second, the multi-scale decomposition of complex dual-wavelet tree transformations is used to analyze the texture of an image. Resource extraction draws resources from an image using gray-level co-occurrence matrix (GLCM). Therefore, the neuro-fuzzy technique is used to classify brain tumor stages as benign, malignant, or normal based on texture characteristics. Finally, tumor location is detected using Otsu threshold. The performance of the classifier is evaluated on the basis of classification accuracies. The simulated results show that the proposed classifier provides better accuracy than the previous method.展开更多
Solder bump technology has been widely used in electronic packaging. With the development of solder bumps towards higher density and finer pitch, it is more difficult to inspect the defects of solder bumps as they are...Solder bump technology has been widely used in electronic packaging. With the development of solder bumps towards higher density and finer pitch, it is more difficult to inspect the defects of solder bumps as they are hidden in the package. A nondestructive method using the transient active thermography has been proposed to inspect the defects of a solder bump, and we aim at developing an intelligent diagnosis system to eliminate the influence of emissivity unevenness and non-uniform heating on defects recognition in active infrared testing. An improved fuzzy c-means(FCM) algorithm based on the entropy weights is investigated in this paper. The captured thermograms are preprocessed to enhance the thermal contrast between the defective and good bumps. Hot spots corresponding to 16 solder bumps are segmented from the thermal images. The statistical features are calculated and selected appropriately to characterize the status of solder bumps in FCM clustering. The missing bump is identified in the FCM result, which is also validated by the principle component analysis. The intelligent diagnosis system using FCM algorithm with the entropy weights is effective for defects recognition in electronic packages.展开更多
基金Sponsored by the Natural Science Foundation of Guangdong Province of China(Grant No.06029281 and 05011905).
文摘A cooperative system of a fuzzy logic model and a fuzzy neural network(CSFLMFNN)is proposed,in which a fuzzy logic model is acquired from domain experts and a fuzzy neural network is generated and prewired according to the model.Then PSO-CSFLMFNN is constructed by introducing particle swarm optimization(PSO)into the cooperative system instead of the commonly used evolutionary algorithms to evolve the prewired fuzzy neural network.The evolutionary fuzzy neural network implements accuracy fuzzy inference without rule matching.PSO-CSFLMFNN is applied to the intelligent fault diagnosis for a petrochemical engineering equipment,in which the cooperative system is proved to be effective.It is shown by the applied results that the performance of the evolutionary fuzzy neural network outperforms remarkably that of the one evolved by genetic algorithm in the convergence rate and the generalization precision.
基金supported by the Fundamental Research Grant Scheme of Ministry of Higher Education,Malaysia(No.6711195)Multi media University and University of Science Malaysia
文摘Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple Fuzzy ARTMAP with Dynamic Decay Adjustment(PMFAMDDA),for accurate discrimination between normal and faulty operating conditions of a Circulating Water(CW)system in a power generation plant is proposed.The decisions of PMFAMDDA are reached through a probabilistic plurality voting strategy that is in agreement with the Bayesian theorem.The results of the proposed PMFAMDDA model are compared with those from an ensemble of Probabilistic Multiple Fuzzy ARTMAP(PMFAM)classifiers.The outcomes reveal that PMFAMDDA,in general,outperforms PMFAM in discriminating operating conditions of the CW system.
文摘A kind of fault diagnosis system of molten carbonate fuel cell (MCFC) stack is proposed in this paper. It is composed of a fuzzy neural network (FNN) and a fault diagnosis element. FNN is able to deal with the information of the expert knowledge and the experiment data efficiently. It also has the ability to approximate any smooth system. FNN is used to identify the fault diagnosis model of MCFC stack. The fuzzy fault decision element can diagnose the state of the MCFC generating system, normal or fault, and can decide the type of the fault based on the outputs of FNN model and the MCFC system. Some simulation experiment results are demonstrated in this paper.
文摘Brain tumor is a major cause of an increased transient between children and adults. This article proposes an improved method based on magnetic resonance (MRI) brain imaging and image segmentation. Automated classification is encouraged by the need for high accuracy in dealing with a human life. Detection of brain tumor is a challenging problem due to the high diversity in tumor appearance and ambiguous tumor boundaries. MRI images are chosen for the detection of brain tumors as they are used in the determination of soft tissues. First, image preprocessing is used to improve image quality. Second, the multi-scale decomposition of complex dual-wavelet tree transformations is used to analyze the texture of an image. Resource extraction draws resources from an image using gray-level co-occurrence matrix (GLCM). Therefore, the neuro-fuzzy technique is used to classify brain tumor stages as benign, malignant, or normal based on texture characteristics. Finally, tumor location is detected using Otsu threshold. The performance of the classifier is evaluated on the basis of classification accuracies. The simulated results show that the proposed classifier provides better accuracy than the previous method.
基金supported by the National Natural Science Foundation of China(Grant Nos.51305179&51305177)the Natural Science Foundation of Jiangsu Higher Education Institutions(Grant No.13KJB510009)
文摘Solder bump technology has been widely used in electronic packaging. With the development of solder bumps towards higher density and finer pitch, it is more difficult to inspect the defects of solder bumps as they are hidden in the package. A nondestructive method using the transient active thermography has been proposed to inspect the defects of a solder bump, and we aim at developing an intelligent diagnosis system to eliminate the influence of emissivity unevenness and non-uniform heating on defects recognition in active infrared testing. An improved fuzzy c-means(FCM) algorithm based on the entropy weights is investigated in this paper. The captured thermograms are preprocessed to enhance the thermal contrast between the defective and good bumps. Hot spots corresponding to 16 solder bumps are segmented from the thermal images. The statistical features are calculated and selected appropriately to characterize the status of solder bumps in FCM clustering. The missing bump is identified in the FCM result, which is also validated by the principle component analysis. The intelligent diagnosis system using FCM algorithm with the entropy weights is effective for defects recognition in electronic packages.