期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
200MW汽轮发电机组振动故障的模糊诊断系统 被引量:20
1
作者 杨苹 吴捷 冯永新 《电力系统自动化》 EI CSCD 北大核心 2001年第1期45-49,共5页
针对现有的汽轮发电机组振动故障的模糊诊断系统精度低这一问题 ,分析了造成其精度低的主要原因 ,提出了新的诊断策略。新策略在模糊综合评判模型的确定和模糊集隶属函数的设置这两个方面 ,采用与以往的诊断系统具有实质性不同的技术来... 针对现有的汽轮发电机组振动故障的模糊诊断系统精度低这一问题 ,分析了造成其精度低的主要原因 ,提出了新的诊断策略。新策略在模糊综合评判模型的确定和模糊集隶属函数的设置这两个方面 ,采用与以往的诊断系统具有实质性不同的技术来实现模糊诊断系统 ,即基于模糊综合评判的变权重模型和模糊集扩展隶属函数的实现技术。在此基础上 ,采用新策略设计和实现了2 0 0 MW汽轮发电机组振动故障的模糊诊断系统。系统的诊断结果表明 ,这一新的故障诊断策略对于 2 0 0 展开更多
关键词 汽轮发电机组 故障诊断 扩展隶属函数 振动 模糊诊断系统
下载PDF
基于神经网络的油罐故障模糊诊断系统
2
作者 李关 《石油化工自动化》 CAS 2005年第6期45-47,共3页
根据油罐故障现象分析,建立了油罐故障诊断模型。采用模糊数学和BP神经网络结合的算法对此诊断模型进行求解,并对模型的有效性进行了分析。
关键词 油罐故障 神经网络 模糊诊断系统
下载PDF
电机在线诊断和模糊系统的研究
3
作者 何坤 刘念 孙克金 《四川大学学报(工程科学版)》 EI CAS CSCD 2001年第6期108-110,共3页
为了有效地提高电机在电力系统中运行的可靠性 ,介绍了运用有限元方法和模糊诊断系统对电机进行在线诊断 ,并建立了较为准确的数学模型。由于电机内部热故障与电机铁心的磁场饱和程度有关 。
关键词 在线诊断 图像分析 电机 有限元法 模糊诊断系统 电力系统 故障诊断 机械故障
下载PDF
GSM与模糊诊断的绝缘子在线监测 被引量:24
4
作者 杨文宇 王建渊 魏威 《高电压技术》 EI CAS CSCD 北大核心 2004年第7期31-33,68,共4页
提出并实现了基于GSM网络的线路绝缘子远程分布在线监测与集中式模糊逻辑诊断系统。在前台监测单元获取绝缘子串的泄漏电流有效值、泄漏电流峰值、泄漏电流脉冲频度、电晕电流和温、湿度等数据 ,利用数字信号处理器预处理 ,借助GSM网络... 提出并实现了基于GSM网络的线路绝缘子远程分布在线监测与集中式模糊逻辑诊断系统。在前台监测单元获取绝缘子串的泄漏电流有效值、泄漏电流峰值、泄漏电流脉冲频度、电晕电流和温、湿度等数据 ,利用数字信号处理器预处理 ,借助GSM网络传输 ,并通过后台模糊逻辑诊断系统管理线路绝缘子的运行状态。 展开更多
关键词 远程在线监测 绝缘子 模糊逻辑诊断系统
下载PDF
征兆参数的逐次自动再生(重组)方法及模糊诊断隶属函数的认知方法(上) 被引量:1
5
作者 陈鹏 MasamiNASU +1 位作者 丰田利夫 黄昭毅 《中国设备管理》 1999年第4期30-32,共3页
当组建一个模糊诊断系统时,必须提取征兆参数(S.P.)和设定处于征兆参数及故障类型间的隶属函数以供作模糊推理。然而,目前还没有令人满意的方法提取征兆参数,以便灵敏地识别其故障类型。为了克服这个困难和确保高度精确的故障诊断,本文... 当组建一个模糊诊断系统时,必须提取征兆参数(S.P.)和设定处于征兆参数及故障类型间的隶属函数以供作模糊推理。然而,目前还没有令人满意的方法提取征兆参数,以便灵敏地识别其故障类型。为了克服这个困难和确保高度精确的故障诊断,本文推荐一种应用遗传基因算法(GA)以“逐次自动再生征兆参数”的新方法,并论述利用可能性理论(possibility theorg)以认知征兆参数隶属度函数的方法。 这种方法在应用于滚珠轴承诊断系统时被证实很有效。 此法也可应用于其他模式识别的课题。 展开更多
关键词 模糊诊断系统 故障诊断 征兆参数 隶属函数
下载PDF
基于遗传优化规则库的电力变压器故障诊断 被引量:3
6
作者 曾利平 姚洪涛 谢秀芬 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期1018-1023,共6页
提出基于遗传算法优化模糊规则库的故障诊断方法,采用模糊故障诊断系统对电力变压器的初期故障进行检测或诊断。采用遗传算法产生优化的模糊规则库,针对缺少数据样本的情况,采用自举法对数据样本进行处理及扩充,使得不同的故障类型有相... 提出基于遗传算法优化模糊规则库的故障诊断方法,采用模糊故障诊断系统对电力变压器的初期故障进行检测或诊断。采用遗传算法产生优化的模糊规则库,针对缺少数据样本的情况,采用自举法对数据样本进行处理及扩充,使得不同的故障类型有相等的样本数。仿真结果表明:该故障诊断方法提高了故障诊断精度和正确率,对于电力变压器故障诊断有效、可行。 展开更多
关键词 电力变压器 模糊诊断系统 遗传算法 自举法
下载PDF
A fuzzy neural network evolved by particle swarm optimization 被引量:1
7
作者 彭志平 彭宏 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第3期316-321,共6页
A cooperative system of a fuzzy logic model and a fuzzy neural network(CSFLMFNN)is proposed,in which a fuzzy logic model is acquired from domain experts and a fuzzy neural network is generated and prewired according t... A cooperative system of a fuzzy logic model and a fuzzy neural network(CSFLMFNN)is proposed,in which a fuzzy logic model is acquired from domain experts and a fuzzy neural network is generated and prewired according to the model.Then PSO-CSFLMFNN is constructed by introducing particle swarm optimization(PSO)into the cooperative system instead of the commonly used evolutionary algorithms to evolve the prewired fuzzy neural network.The evolutionary fuzzy neural network implements accuracy fuzzy inference without rule matching.PSO-CSFLMFNN is applied to the intelligent fault diagnosis for a petrochemical engineering equipment,in which the cooperative system is proved to be effective.It is shown by the applied results that the performance of the evolutionary fuzzy neural network outperforms remarkably that of the one evolved by genetic algorithm in the convergence rate and the generalization precision. 展开更多
关键词 fuzzy neural network EVOLVING particle swarm optimization intelligent fault diagnosis
下载PDF
An Ensemble Application of Conflict-Resolving ART-Based Neural Networks to Fault Detection and Diagnosis 被引量:1
8
作者 Shing-chiang TAN Chee-peng LIM 《Journal of Measurement Science and Instrumentation》 CAS 2011年第4期371-377,共7页
Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple ... Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple Fuzzy ARTMAP with Dynamic Decay Adjustment(PMFAMDDA),for accurate discrimination between normal and faulty operating conditions of a Circulating Water(CW)system in a power generation plant is proposed.The decisions of PMFAMDDA are reached through a probabilistic plurality voting strategy that is in agreement with the Bayesian theorem.The results of the proposed PMFAMDDA model are compared with those from an ensemble of Probabilistic Multiple Fuzzy ARTMAP(PMFAM)classifiers.The outcomes reveal that PMFAMDDA,in general,outperforms PMFAM in discriminating operating conditions of the CW system. 展开更多
关键词 fault detection and diagnosis fuzzy ARTMAP dynamic decay adjustment algorithm pluralityvoting circulating water system
下载PDF
Fuzzy fault diagnosis system of MCFC
9
作者 WangZhenlei QianFeng CaoGuangyi 《High Technology Letters》 EI CAS 2005年第1期72-74,共3页
A kind of fault diagnosis system of molten carbonate fuel cell (MCFC) stack is proposed in this paper. It is composed of a fuzzy neural network (FNN) and a fault diagnosis element. FNN is able to deal with the informa... A kind of fault diagnosis system of molten carbonate fuel cell (MCFC) stack is proposed in this paper. It is composed of a fuzzy neural network (FNN) and a fault diagnosis element. FNN is able to deal with the information of the expert knowledge and the experiment data efficiently. It also has the ability to approximate any smooth system. FNN is used to identify the fault diagnosis model of MCFC stack. The fuzzy fault decision element can diagnose the state of the MCFC generating system, normal or fault, and can decide the type of the fault based on the outputs of FNN model and the MCFC system. Some simulation experiment results are demonstrated in this paper. 展开更多
关键词 模糊故障诊断系统 碳酸盐燃料电池 模糊神经网络系统 电化学系统 自动化技术
下载PDF
Computational Intelligence-Based System in the Support of the Diagnosis of Brain Tumors: An Approach through Fuzzy C-Means Method
10
作者 Rodrigo Gondim Miranda 《Journal of Pharmacy and Pharmacology》 2018年第6期626-628,共3页
Brain tumor is a major cause of an increased transient between children and adults. This article proposes an improved method based on magnetic resonance (MRI) brain imaging and image segmentation. Automated classifi... Brain tumor is a major cause of an increased transient between children and adults. This article proposes an improved method based on magnetic resonance (MRI) brain imaging and image segmentation. Automated classification is encouraged by the need for high accuracy in dealing with a human life. Detection of brain tumor is a challenging problem due to the high diversity in tumor appearance and ambiguous tumor boundaries. MRI images are chosen for the detection of brain tumors as they are used in the determination of soft tissues. First, image preprocessing is used to improve image quality. Second, the multi-scale decomposition of complex dual-wavelet tree transformations is used to analyze the texture of an image. Resource extraction draws resources from an image using gray-level co-occurrence matrix (GLCM). Therefore, the neuro-fuzzy technique is used to classify brain tumor stages as benign, malignant, or normal based on texture characteristics. Finally, tumor location is detected using Otsu threshold. The performance of the classifier is evaluated on the basis of classification accuracies. The simulated results show that the proposed classifier provides better accuracy than the previous method. 展开更多
关键词 BIOINFORMATICS NEUROIMAGING TUMORS fuzzy c-means.
下载PDF
Intelligent diagnosis of the solder bumps defects using fuzzy C-means algorithm with the weighted coefficients 被引量:1
11
作者 LU XiangNing SHI TieLin +3 位作者 WANG SuYa LI Li Yi SU Lei LIAO GuangLan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第10期1689-1695,共7页
Solder bump technology has been widely used in electronic packaging. With the development of solder bumps towards higher density and finer pitch, it is more difficult to inspect the defects of solder bumps as they are... Solder bump technology has been widely used in electronic packaging. With the development of solder bumps towards higher density and finer pitch, it is more difficult to inspect the defects of solder bumps as they are hidden in the package. A nondestructive method using the transient active thermography has been proposed to inspect the defects of a solder bump, and we aim at developing an intelligent diagnosis system to eliminate the influence of emissivity unevenness and non-uniform heating on defects recognition in active infrared testing. An improved fuzzy c-means(FCM) algorithm based on the entropy weights is investigated in this paper. The captured thermograms are preprocessed to enhance the thermal contrast between the defective and good bumps. Hot spots corresponding to 16 solder bumps are segmented from the thermal images. The statistical features are calculated and selected appropriately to characterize the status of solder bumps in FCM clustering. The missing bump is identified in the FCM result, which is also validated by the principle component analysis. The intelligent diagnosis system using FCM algorithm with the entropy weights is effective for defects recognition in electronic packages. 展开更多
关键词 solder bump Fuzzy C-Means clustering feature weighting principal component analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部