期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于模糊语义法的高校图书馆电子资源绩效评价研究 被引量:13
1
作者 贺秀英 王晓文 呼翠侠 《情报理论与实践》 CSSCI 北大核心 2016年第2期113-115,共3页
电子资源投入产出绩效评价是高校图书馆建设的难题。文章基于模糊理论构建高校图书馆电子资源绩效评价的综合模型。该模型通过建立电子资源绩效评价指标体系,以三角模糊理论求解指标权重值,并利用线性加权法计算电子资源的投入、产出数... 电子资源投入产出绩效评价是高校图书馆建设的难题。文章基于模糊理论构建高校图书馆电子资源绩效评价的综合模型。该模型通过建立电子资源绩效评价指标体系,以三角模糊理论求解指标权重值,并利用线性加权法计算电子资源的投入、产出数值,进而得出投入产出绩效。以西安某校为例进行了实证,检验了该模型的科学性。模型的构建和应用为评价高校图书馆电子资源的质量和适用性提供科学的理论依据和方法指导。 展开更多
关键词 模糊语义法 高校图书馆 电子资源 绩效评价
下载PDF
返乡农民工创业胜任力模型构建与应用 被引量:2
2
作者 王乐杰 《山东工商学院学报》 2020年第6期66-74,共9页
针对返乡农民工创业积极性高但创业绩效不佳的现状,以创业成功为导向,基于文献分析和专家访谈构建了包含4个一级指标和13个二级指标的返乡农民工创业胜任力模型,借助层次分析法(AHP)确定各级指标权重。为保证模型具有较好的可操作性,采... 针对返乡农民工创业积极性高但创业绩效不佳的现状,以创业成功为导向,基于文献分析和专家访谈构建了包含4个一级指标和13个二级指标的返乡农民工创业胜任力模型,借助层次分析法(AHP)确定各级指标权重。为保证模型具有较好的可操作性,采用二元语义模糊评价法对各指标进行量化,并运用该模型对一名返乡创业农民工进行创业胜任力测评。 展开更多
关键词 返乡农民工创业 创业胜任力模型 层次分析 二元语义模糊评价
下载PDF
Fuzzy Recognition Method for Fish Ontology Retrieving 被引量:1
3
作者 郑西涛 张永伟 《Journal of Measurement Science and Instrumentation》 CAS 2011年第2期184-187,共4页
This paper presents a new method based on ontology formarion and fuzzy recognition of digital pictures. Ontology creation and doormat indexing are well-kown bottlenecks for integrating semantic services and for the Se... This paper presents a new method based on ontology formarion and fuzzy recognition of digital pictures. Ontology creation and doormat indexing are well-kown bottlenecks for integrating semantic services and for the Semantic Web, and thus the new method will be able to make automatic creation of the fish geometric ontology and automatic indexing to existing Semantic Web. Fuzzy set and fuzzy recognition are used to decide wheter a new fish picture belongs to an existing training set, here with the carp as an example. Training ing samples are used to set up fuzzy set and membership functions. The existing way of fish ontology formation can be integrated with the new method and the existing work for fish web can be used. 展开更多
关键词 fuzzy set pattern recognition ONTOLOGY fish recognition
下载PDF
Research on Application of Data Mining in Virtual Community of Foreign Language Learning
4
作者 GAO Liuxin 《International English Education Research》 2018年第1期7-9,共3页
The construction of virtual community in foreign language learning is a comprehensive foreign language learning environment integrated with foreign language vocabulary database construction and vocabulary retrieval, c... The construction of virtual community in foreign language learning is a comprehensive foreign language learning environment integrated with foreign language vocabulary database construction and vocabulary retrieval, combining the virtual reality technology to construct the language environment of foreign language learning. The virtual community of foreign language leaming can improve the sense of language authenticity in foreign language learning and improve the quality of foreign language teaching. A method of building a virtual community for foreign language learning is proposed based on data mining technology, data acquisition and feature preprocessing model for building semantic vocabulary of foreign language learning is constructed, the linguistic environment characteristics of the semantic vocabulary data of foreign language learning is analyzed, and the semantic noumenon structure model is obtained. Fuzzy clustering method is used for vocabulary clustering and comprehensive retrieval in the virtual community of foreign language learning, the performance of vocabulary classification in foreign language learning is improved, the adaptive semantic information fusion method is used to realize the vocabulary data mining in the virtual community of foreign language learning, information retrieval and access scheduling for virtual communities in foreign language learning are realized based on data mining results. The simulation results show that the accuracy of foreign language vocabulary retrieval is good, improve the efficiency of foreign language learning. 展开更多
关键词 Data mining Foreign language learning Virtual community Language environment Fuzzy clustering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部