期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于信息熵-模糊谱聚类的非均质碎屑岩储层孔隙结构分类 被引量:10
1
作者 葛新民 范宜仁 +3 位作者 唐利民 陈义国 齐林海 邢帅 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期2227-2235,共9页
提出基于信息熵-模糊谱聚类算法的孔隙结构自动分类技术,应用谱聚类算法解决凸分布聚类问题,实现全局收敛,有效避免"维数灾难"。根据信息熵理论对谱聚类算法中的尺度参数进行优化,得到孔隙结构类型。在此基础上,结合模糊数学... 提出基于信息熵-模糊谱聚类算法的孔隙结构自动分类技术,应用谱聚类算法解决凸分布聚类问题,实现全局收敛,有效避免"维数灾难"。根据信息熵理论对谱聚类算法中的尺度参数进行优化,得到孔隙结构类型。在此基础上,结合模糊数学算法得到每个样本对孔隙结构类型的隶属度,根据隶属度最优法则(样品对某一类孔隙结构的隶属度大于70%)确定不同样本所属孔隙结构类别。研究结果表明:该算法所得孔隙结构分类结果与试油、试采等生产测试结果十分吻合,工程应用效果十分明显。 展开更多
关键词 非均质碎屑岩 孔隙结构分 模糊谱聚类算法 信息熵 尺度参数优化
下载PDF
Response of fuzzy clustering on different threshold determination algorithms in spectral change vector analysis over Western Himalaya, India 被引量:2
2
作者 SINGH Sartajvir TALWAR Rajneesh 《Journal of Mountain Science》 SCIE CSCD 2017年第7期1391-1404,共14页
Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an ex... Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an exceptional advantage of discriminating change in terms of change magnitude and vector direction from multispectral bands. The estimation of precise threshold is one of the most crucial task in CVA to separate the change pixels from unchanged pixels because overall assessment of change detection method is highly dependent on selected threshold value. In recent years, integration of fuzzy clustering and remotely sensed data have become appropriate and realistic choice for change detection applications. The novelty of the proposed model lies within use of fuzzy maximum likelihood classification (FMLC) as fuzzy clustering in CVA. The FMLC based CVA is implemented using diverse threshold determination algorithms such as double-window flexible pace search (DFPS), interactive trial and error (T&E), and 3x3-pixel kernel window (PKW). Unlike existing CVA techniques, addition of fuzzy clustering in CVA permits each pixel to have multiple class categories and offers ease in threshold determination process. In present work, the comparative analysis has highlighted the performance of FMLC based CVA overimproved SCVA both in terms of accuracy assessment and operational complexity. Among all the examined threshold searching algorithms, FMLC based CVA using DFPS algorithm is found to be the most efficient method. 展开更多
关键词 Change vector analysis (CVA) Fuzzymaximum likelihood classification (FMLC) Double-window flexible pace search (DFPS) Interactive trialand error (T&E) Pixel kernel window (PKW)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部