期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于自适应模糊高斯核聚类的软测量建模方法 被引量:2
1
作者 夏源 杨慧中 《上海交通大学学报》 EI CAS CSCD 北大核心 2017年第6期722-726,共5页
单一模型一般难以表达复杂的生产过程特性,在软测量应用中往往容易使模型的估计精度低、泛化性能差.提出一种基于自适应模糊高斯核聚类的概率加权多模型融合方法,利用高维空间内样本的分散性来确定聚类中心,能取得最佳聚类效果.根据贝... 单一模型一般难以表达复杂的生产过程特性,在软测量应用中往往容易使模型的估计精度低、泛化性能差.提出一种基于自适应模糊高斯核聚类的概率加权多模型融合方法,利用高维空间内样本的分散性来确定聚类中心,能取得最佳聚类效果.根据贝叶斯后验定律进行多模型融合,使总模型输出更具合理性.该方法不仅克服了单模型预测的局限性,同时对传统多模型融合方法做了一些改进,提高了过程估计的精度. 展开更多
关键词 自适应 模糊高斯核聚类 概率加权 多模型
下载PDF
基于高斯核模糊C均值聚类的光伏阵列故障诊断方法 被引量:14
2
作者 刘圣洋 冬雷 +2 位作者 王晓晓 曹晓东 廖晓钟 《太阳能学报》 EI CAS CSCD 北大核心 2021年第5期286-294,共9页
光伏阵列故障诊断过程中传统的故障特征量难以区分特征相似的单故障和多重故障情况,而实际诊断中外场实验采集到的数据也含有较强的噪声,从而导致故障诊断准确率下降。针对这一问题,提出由一个新的特征向量对不同故障进行表征,该特征向... 光伏阵列故障诊断过程中传统的故障特征量难以区分特征相似的单故障和多重故障情况,而实际诊断中外场实验采集到的数据也含有较强的噪声,从而导致故障诊断准确率下降。针对这一问题,提出由一个新的特征向量对不同故障进行表征,该特征向量包含:归一化电压V_(norm)、归一化电流I_(norm)、填充因子FF共3个特征量,并利用这3个特征量采用高斯核模糊C均值聚类(GKFCM)方法对光伏阵列中8种故障进行故障识别的方法。这3种故障特征量的结合可有效减少外界气象条件对故障识别的影响;由于GKFCM对复杂数据集具有良好的聚类性能,在复杂环境下不同故障类的识别过程中可有效提高识别准确率。该算法分为训练和测试阶段,在训练阶段对训练集中故障数据利用3个特征量构成的特征向量进行表征并聚类获取类心,在故障识别阶段新故障数据利用同样的方法获得聚类类心并与训练阶段获得的各类故障类心进行相似度计算,从而实现故障分类和新故障的识别。该方法不仅可诊断单故障情况,也可识别多重故障情况,具有较强的抗干扰能力。最后通过仿真及实验证明该方法可有效诊断光伏阵列中的常见故障。 展开更多
关键词 太阳能 光伏阵列 故障诊断 填充因子 高斯模糊C均值
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部