Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful...Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful in overcoming non-linear dynamic behavior, uncertain and time-varying parameters, un-modeled dynamics, and couples between the automatic turbulence control (ATC) and the automatic acid temperature control (AATC) with varying parameters during the operation process. The quasi-cascade control system of inner and outer loop self-adaptive fuzzy PID controller was built, which could effectively control the pickling speed of plates and strips. The simulated results and real application indicate that the plates and strips acid pickling speed control system has good performances of adaptively tracking the parameter variations and anti-disturbances, which ensures the match of acid pickling temperature and turbulence of flowing with acid pickling speed, improving the surface quality of plates and strips acid pickling, and energy efficiency.展开更多
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustab...A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.展开更多
This paper presented PSS (Power system stabilizer) design based on Genetic Algorithm - Fuzzy PID (Proportional Integral and derivative) or GAFPID. GAFPID based PSS design is considered for multimachine power syste...This paper presented PSS (Power system stabilizer) design based on Genetic Algorithm - Fuzzy PID (Proportional Integral and derivative) or GAFPID. GAFPID based PSS design is considered for multimachine power system. The main motivation for this design is to stabilize or to control low-fi'equency oscillation and terminal voltage of power systems. Genetic Algorithm (GA) is employed for the optimization of the parameter of stabilizer. By minimizing an objective function in which the oscillatory speed deviation of the generator, small signal and large signal performance of the system is improved. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a simple two-area power system.展开更多
In order to improve the control effect of the bearing, this article studies the temperature control technology to improve the genetic algorithm, at the same time, analyze temperature simulation of bearing based on fuz...In order to improve the control effect of the bearing, this article studies the temperature control technology to improve the genetic algorithm, at the same time, analyze temperature simulation of bearing based on fuzzy PID control technology and improved genetic algorithm, the simulation results show that, the control method has good robustness based on Improved Genetic Algorithm. It can monitor a plurality of beating temperature, provides a new method for the detection and prevention of bearing fault.展开更多
基金Project(51090385) supported by the National Natural Science Foundation of ChinaProject(2001IB001) supported by Yunnan Provincial Science and Technology Fund, China
文摘Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful in overcoming non-linear dynamic behavior, uncertain and time-varying parameters, un-modeled dynamics, and couples between the automatic turbulence control (ATC) and the automatic acid temperature control (AATC) with varying parameters during the operation process. The quasi-cascade control system of inner and outer loop self-adaptive fuzzy PID controller was built, which could effectively control the pickling speed of plates and strips. The simulated results and real application indicate that the plates and strips acid pickling speed control system has good performances of adaptively tracking the parameter variations and anti-disturbances, which ensures the match of acid pickling temperature and turbulence of flowing with acid pickling speed, improving the surface quality of plates and strips acid pickling, and energy efficiency.
文摘A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.
文摘This paper presented PSS (Power system stabilizer) design based on Genetic Algorithm - Fuzzy PID (Proportional Integral and derivative) or GAFPID. GAFPID based PSS design is considered for multimachine power system. The main motivation for this design is to stabilize or to control low-fi'equency oscillation and terminal voltage of power systems. Genetic Algorithm (GA) is employed for the optimization of the parameter of stabilizer. By minimizing an objective function in which the oscillatory speed deviation of the generator, small signal and large signal performance of the system is improved. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a simple two-area power system.
文摘In order to improve the control effect of the bearing, this article studies the temperature control technology to improve the genetic algorithm, at the same time, analyze temperature simulation of bearing based on fuzzy PID control technology and improved genetic algorithm, the simulation results show that, the control method has good robustness based on Improved Genetic Algorithm. It can monitor a plurality of beating temperature, provides a new method for the detection and prevention of bearing fault.