期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
模糊C-均值(FCM)聚类法与矢量量化法相结合用于说话人识别 被引量:7
1
作者 吴晓娟 韩先花 聂开宝 《电子与信息学报》 EI CSCD 北大核心 2002年第6期845-849,共5页
该文提出了一种将模糊C-均值聚类法与矢量量化法相结合进行说话人识别的方法。该算法将从语音信号中提取的 12阶 LPC(线性预测编码)倒谱系数作为待分类样本的 12个指标,先用矢量量化法求出每个说话人表征特征参数的码书,作为模糊聚类算... 该文提出了一种将模糊C-均值聚类法与矢量量化法相结合进行说话人识别的方法。该算法将从语音信号中提取的 12阶 LPC(线性预测编码)倒谱系数作为待分类样本的 12个指标,先用矢量量化法求出每个说话人表征特征参数的码书,作为模糊聚类算法的聚类中心,最后将待识别的特征矢量以得到的码书为聚类中心,进行聚类识别。该算法所使用的特征参数较少,计算比较简单,但识别率较矢量量化法高。 展开更多
关键词 模糊c-均值(FCM)聚类 模糊聚类 矢量量化 说话人识别 语音特征 语音识别
下载PDF
模糊C-均值聚类新算法在说话人辨认中的应用 被引量:2
2
作者 王成儒 王金甲 《计算机工程与应用》 CSCD 北大核心 2003年第27期94-95,140,共3页
该文提出了一种将模糊C-均值聚类法的各种改进算法与矢量量化法相结合的说话人辨认的新方法。首先从语音信号中提取MFCC特征矢量,其次利用矢量量化来设计码书,最后用改进算法对待识语音进行辨认。新算法的辨认率达到95%以上,抗噪性能也... 该文提出了一种将模糊C-均值聚类法的各种改进算法与矢量量化法相结合的说话人辨认的新方法。首先从语音信号中提取MFCC特征矢量,其次利用矢量量化来设计码书,最后用改进算法对待识语音进行辨认。新算法的辨认率达到95%以上,抗噪性能也优于矢量量化法。 展开更多
关键词 模糊c-均值聚类 矢量量化 模拟退火算 遗传算 进化免疫算
下载PDF
模糊c-均值聚类法在干港选址中的应用 被引量:1
3
作者 王立峰 林钢 林吾思 《水运工程》 北大核心 2009年第5期25-27,102,共4页
合理的干港选址,对于区域经济发展起着至关重要的作用。根据干港规划布局的影响因素,引入模糊c-均值聚类法,来验证干港选址的合理性。
关键词 干港 模糊c-均值聚类 集装箱运输
下载PDF
模糊c-均值聚类法在干港选址中的应用 被引量:1
4
作者 张兵 周海宁 《水运管理》 2009年第2期13-16,共4页
为促进区域经济发展,更合理地进行干港选址,分析干港规划选址布局的影响因素,提出模糊c-均值聚类方法,认为模糊c-均值聚类法具有分析许多不确定性因素的优势,适应范围较广,且设计简单,在实际选址工作中易于将其转化成优化问题进行解决,... 为促进区域经济发展,更合理地进行干港选址,分析干港规划选址布局的影响因素,提出模糊c-均值聚类方法,认为模糊c-均值聚类法具有分析许多不确定性因素的优势,适应范围较广,且设计简单,在实际选址工作中易于将其转化成优化问题进行解决,其易于在计算机应用的特点对验证干港选址的合理性具有一定的理论意义。 展开更多
关键词 干港 选址 模糊c-均值聚类 集装箱运输
下载PDF
改进模糊聚类负荷预测方法的探讨
5
作者 李鹏 《广东输电与变电技术》 2008年第6期19-23,共5页
针对传统的c-均值模糊聚类算法易陷入局部最优解、初始值c值的给定存在着很大的人为因素以及在整个计算过程中无法自我调节的缺陷,利用遗传算法的全局寻优能力并采用一种新式的双码染色体编码方法对传统的c-均值模糊聚类算法进行了改进... 针对传统的c-均值模糊聚类算法易陷入局部最优解、初始值c值的给定存在着很大的人为因素以及在整个计算过程中无法自我调节的缺陷,利用遗传算法的全局寻优能力并采用一种新式的双码染色体编码方法对传统的c-均值模糊聚类算法进行了改进,同时将这一自适应的SFGO(Sampling Fuzzy c-means with Genetic Optimization)算法运用到电力系统的中长期负荷预测中,得到了比较好的效果。 展开更多
关键词 c-均值模糊聚类 双码染色体 遗传算 电力负荷预测
下载PDF
基于最小二乘支持向量机的改进型GIS局部放电识别方法 被引量:12
6
作者 王天健 吴振升 +1 位作者 王晖 刘栋 《电网技术》 EI CSCD 北大核心 2011年第11期178-182,共5页
利用最小二乘支持向量机(least square-support vectormachine,LS-SVM)的方法识别气体绝缘组合电器局部放电的类型。在信号的快速分类后利用相位分布的局部放电特征谱图的特征参数作为LS-SVM识别放电类型的依据;信号快速分类处理部分主... 利用最小二乘支持向量机(least square-support vectormachine,LS-SVM)的方法识别气体绝缘组合电器局部放电的类型。在信号的快速分类后利用相位分布的局部放电特征谱图的特征参数作为LS-SVM识别放电类型的依据;信号快速分类处理部分主要包括信号时间-频率特性提取部分和模糊C-均值聚类2大部分,它们把信号的时间-频率点群分为由若干具有相似信号组成的信号子群。仿真实验表明该方法可有效地应对设备情况复杂的场合且有效回避传统神经网络识别受初始值影响较大、维数过高等一系列问题。 展开更多
关键词 气体绝缘组合电器 等效时频 模糊c-均值聚类 最小二乘支持向量机
下载PDF
NEW SHADOWED C-MEANS CLUSTERING WITH FEATURE WEIGHTS 被引量:2
7
作者 王丽娜 王建东 姜坚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期273-283,共11页
Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the ... Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the prototype of each cluster. By integrating feature weights, a formula for weight calculation is introduced to the clustering algorithm. The selection of weight exponent is crucial for good result and the weights are updated iteratively with each partition of clusters. The convergence of the weighted algorithms is given, and the feasible cluster validity indices of data mining application are utilized. Experimental results on both synthetic and real-life numerical data with different feature weights demonstrate that the weighted algorithm is better than the other unweighted algorithms. 展开更多
关键词 fuzzy c-means shadowed sets shadowed c-means feature weights cluster validity index
下载PDF
模糊理论在遥感图像分类中的应用 被引量:4
8
作者 王荣华 干嘉元 +1 位作者 过仲阳 吴佳勤 《上海地质》 2007年第4期52-55,共4页
利用2000年假彩色遥感图像,采用模糊C-均值法中的欧氏距离和马氏距离法对崇明东滩的遥感图像进行了处理。通过对白色覆盖物、未耕种土地、一号水稻田、水体和二号水稻田的分类结果表明,欧氏距离的聚类结果优于马氏距离。
关键词 遥感图像分类 模糊c-均值聚类 欧氏距离 马氏距离
下载PDF
Power interconnected system clustering with advanced fuzzy C-mean algorithm 被引量:6
9
作者 王洪梅 KIM Jae-Hyung +2 位作者 JUNG Dong-Yean LEE Sang-Min LEE Sang-Hyuk 《Journal of Central South University》 SCIE EI CAS 2011年第1期190-195,共6页
An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m... An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system. 展开更多
关键词 fuzzy c-mean similarity measure distance measure interconnected system CLUSTERING
下载PDF
Watershed classification by remote sensing indices: A fuzzy c-means clustering approach 被引量:10
10
作者 Bahram CHOUBIN Karim SOLAIMANI +1 位作者 Mahmoud HABIBNEJAD ROSHAN Arash MALEKIAN 《Journal of Mountain Science》 SCIE CSCD 2017年第10期2053-2063,共11页
Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to ident... Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures. 展开更多
关键词 Karkheh watershed Fuzzy c-means clustering Watershed classification Homogeneous sub-watersheds
下载PDF
Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms 被引量:1
11
作者 Jalali Zakaria 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期959-966,共8页
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien... Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions. 展开更多
关键词 SMR based on continuous functions Slope stability analysis K-means and FCM clustering algorithms Validation of clustering algorithms Sangan iron ore mines
下载PDF
Research on Image Segmentation Algorithm based on Fuzzy C-mean Clustering
12
作者 Xiaona SONG Zuobing WANG 《International Journal of Technology Management》 2015年第2期28-30,共3页
This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the ... This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation. 展开更多
关键词 Image segmentation Fuzzy clustering Fuzzy c-means Spatial information ANTI-NOISE
下载PDF
网架结构在地震下的失效模式及其数值表述 被引量:13
13
作者 张成 吴慧 高博青 《振动与冲击》 EI CSCD 北大核心 2011年第8期45-50,共6页
通过对地震作用下不同形式的网架结构进行大规模数值计算,以最大节点位移超过结构跨度的1/50为失效准则,分析了其动力失效模式及特征,将决定网架结构动力失效模式的因素提炼为四个方面:结构8P杆件比例、全时程的最大位移、平均单杆塑性... 通过对地震作用下不同形式的网架结构进行大规模数值计算,以最大节点位移超过结构跨度的1/50为失效准则,分析了其动力失效模式及特征,将决定网架结构动力失效模式的因素提炼为四个方面:结构8P杆件比例、全时程的最大位移、平均单杆塑性应变能以及临失效前平均位移与最大位移的比值。由于网架结构各失效模式之间存在模糊性,利用模糊C-均值方法分析以上四个因素,进而将网架动力失效模式归为三类:失稳型局部失效、强度型整体失效和强度型局部失效。结果表明,模糊C-均值方法可以有效地划分网架结构的失效模式,并将自然语言描述的失效模式转变为数字语言的表述,得到各失效模式的典型数字特征,可用于识别其他网架结构,为结构的性能化设计打下基础。 展开更多
关键词 网架结构 失效模式 模糊c-均值法 数值表述
下载PDF
医学图像自动多阈值分割 被引量:7
14
作者 段锐 管一弘 《计算机应用》 CSCD 北大核心 2008年第S2期196-197,共2页
针对医学图像的自动多阈值分割问题,采用模糊C-均值(FCM)聚类法找到医学图像的不同组织和背景的聚类中心,再利用二维直方图的方法,找到多阈值分割的各个阈值点进行分割。引用二维直方图的方法可以很好地保留目标的细节信息,更好地抑制... 针对医学图像的自动多阈值分割问题,采用模糊C-均值(FCM)聚类法找到医学图像的不同组织和背景的聚类中心,再利用二维直方图的方法,找到多阈值分割的各个阈值点进行分割。引用二维直方图的方法可以很好地保留目标的细节信息,更好地抑制噪声。 展开更多
关键词 多阈值分割 模糊c-均值聚类 二维直方图 自动分割
下载PDF
“一带一路”下基于两阶段模型的无水港选址研究 被引量:1
15
作者 梁承姬 黄博峰 《计算机应用与软件》 北大核心 2018年第8期31-36,共6页
针对无水港选址优化问题,提出两阶段模型的无水港选择方法,分别解决候选城市的筛选和选址优化问题。第一阶段,利用模糊C-均值聚类分析法(FCM)在亚欧大陆的众多城市中选择候选城市;第二阶段,针对选址优化和运输线路选择问题,考虑多式联运... 针对无水港选址优化问题,提出两阶段模型的无水港选择方法,分别解决候选城市的筛选和选址优化问题。第一阶段,利用模糊C-均值聚类分析法(FCM)在亚欧大陆的众多城市中选择候选城市;第二阶段,针对选址优化和运输线路选择问题,考虑多式联运,建立以总成本最小化为目标的数学模型,其中总成本包括运输成本、无水港建设成本、换装成本等,利用遗传算法进行求解。通过算例分析得出,与用直接选址求解法得出的结果相比,运用两阶段模型求解的总成本下降了15.50%。结果表明:通过两阶段模型可以得到更合理、经济的选址及运输方案,对于"一带一路"下的无水港选址研究具有理论参考意义。 展开更多
关键词 无水港选址 两阶段模型 多式联运 模糊c-均值聚类 遗传算
下载PDF
绵阳城市热岛效应分析 被引量:1
16
作者 徐卫民 蔡元刚 +1 位作者 吴婷婷 杨戬 《高原山地气象研究》 2019年第3期91-96,共6页
本文首先采用模糊c-均值聚类法和剔除法,筛选出用于计算绵阳城市热岛强度的10个城市站和15个郊区站,然后利用这25个自动气象站的逐时气温资料,分析2018年绵阳城市热岛效应不同时间尺度的变化特征。结果表明:2018年绵阳存在城市热岛效应... 本文首先采用模糊c-均值聚类法和剔除法,筛选出用于计算绵阳城市热岛强度的10个城市站和15个郊区站,然后利用这25个自动气象站的逐时气温资料,分析2018年绵阳城市热岛效应不同时间尺度的变化特征。结果表明:2018年绵阳存在城市热岛效应,平均热岛强度为0.64℃,表现为弱热岛等级;四季热岛效应冬季最强,其次是春季,夏季和秋季相当;逐月热岛强度3月最大、7月最小;绵阳城市热岛效应存在明显的日变化,热岛强度夜间大于白天,日最大热岛强度几乎均出现在晚上。 展开更多
关键词 热岛强度 自动气象站 模糊c-均值聚类 剔除
下载PDF
A model to determining the remaining useful life of rotating equipment,based on a new approach to determining state of degradation 被引量:3
17
作者 Saeed RAMEZANI Alireza MOINI +1 位作者 Mohamad RIAHI Adolfo Crespo MARQUEZ 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2291-2310,共20页
Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of th... Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used. 展开更多
关键词 remaining useful life(RUL) prognostics and health management(PHM) autoregressive markov regime switching(ARMRS) health index(HI) Dempster-Shafer theory fuzzy c-means(FCM) Kurtosis-entropy DEGRADATION
下载PDF
AN UNSUPERVISED CLASSIFICATION FOR FULLY POLARIMETRIC SAR DATA USING SPAN/H/α IHSL TRANSFORM AND THE FCM ALGORITHM 被引量:1
18
作者 Wu Yirong Cao Fang Hong Wen 《Journal of Electronics(China)》 2007年第2期145-149,共5页
In this paper, the IHSL transform and the Fuzzy C-Means (FCM) segmentation algorithm are combined together to perform the unsupervised classification for fully polarimetric Synthetic Ap-erture Rader (SAR) data. We app... In this paper, the IHSL transform and the Fuzzy C-Means (FCM) segmentation algorithm are combined together to perform the unsupervised classification for fully polarimetric Synthetic Ap-erture Rader (SAR) data. We apply the IHSL colour transform to H/α/SPANspace to obtain a new space (RGB colour space) which has a uniform distinguishability among inner parameters and contains the whole polarimetric information in H/α/SPAN.Then the FCM algorithm is applied to this RGB space to finish the classification procedure. The main advantages of this method are that the parameters in the color space have similar interclass distinguishability, thus it can achieve a high performance in the pixel based segmentation algorithm, and since we can treat the parameters in the same way, the segmentation procedure can be simplified. The experiments show that it can provide an improved classification result compared with the method which uses the H/α/SPANspace di-rectly during the segmentation procedure. 展开更多
关键词 IHSL transform Fuzzy c-Means (FCM) segmentation Fully polarimetric SyntheticAperture Rader (SAR) data Unsupervised classification
下载PDF
A product module mining method for PLM database 被引量:2
19
作者 雷佻钰 彭卫平 +3 位作者 雷金 钟院华 张秋华 窦俊豪 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1754-1766,共13页
Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in ... Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in enterprises, the product lifecycle data have been effectively managed. However, these data have not been fully utilized in module division, especially for complex machinery products. To solve this problem, a product module mining method for the PLM database is proposed to improve the effect of module division. Firstly, product data are extracted from the PLM database by data extraction algorithm. Then, data normalization and structure logical inspection are used to preprocess the extracted defective data. The preprocessed product data are analyzed and expressed in a matrix for module mining. Finally, the fuzzy c-means clustering(FCM) algorithm is used to generate product modules, which are stored in product module library after module marking and post-processing. The feasibility and effectiveness of the proposed method are verified by a case study of high pressure valve. 展开更多
关键词 product design module division product module mining product lifecycle management (PLM) database
下载PDF
Semi-supervised kernel FCM algorithm for remote sensing image classification
20
作者 刘小芳 HeBinbin LiXiaowen 《High Technology Letters》 EI CAS 2011年第4期427-432,共6页
These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to over... These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others. 展开更多
关键词 remote sensing image classification semi-supervised kernel fuzzy c-means (SSKFCM)algorithm Beijing-1 micro-satellite semi-supcrvisod learning tochnique kernel method
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部