针对Mapreduce机制下算法通信时间占用比过高,实际应用价值受限的情况,提出基于Hadoop二阶段并行c-Means聚类算法用来解决超大数据的分类问题。首先,改进Mapreduce机制下的MPI通信管理方法,采用成员管理协议方式实现成员管理与Mapreduc...针对Mapreduce机制下算法通信时间占用比过高,实际应用价值受限的情况,提出基于Hadoop二阶段并行c-Means聚类算法用来解决超大数据的分类问题。首先,改进Mapreduce机制下的MPI通信管理方法,采用成员管理协议方式实现成员管理与Mapreduce降低操作的同步化;其次,实行典型个体组降低操作代替全局个体降低操作,并定义二阶段缓冲算法;最后,通过第一阶段的缓冲进一步降低第二阶段Mapreduce操作的数据量,尽可能降低大数据带来的对算法负面影响。在此基础上,利用人造大数据测试集和KDD CUP 99入侵测试集进行仿真,实验结果表明,该算法既能保证聚类精度要求又可有效加快算法运行效率。展开更多
针对蚁群融合FCM聚类算法在蛋白质相互作用网络中进行复合物识别的准确率不高、召回率较低以及时间性能不佳等问题进行了研究,提出一种基于模糊蚁群的加权蛋白质复合物识别算法FAC-PC(algorithm for identifying weighted protein compl...针对蚁群融合FCM聚类算法在蛋白质相互作用网络中进行复合物识别的准确率不高、召回率较低以及时间性能不佳等问题进行了研究,提出一种基于模糊蚁群的加权蛋白质复合物识别算法FAC-PC(algorithm for identifying weighted protein complexes based on fuzzy ant colony clustering)。首先,融合边聚集系数与基因共表达的皮尔森相关系数构建加权网络;其次提出EPS(essential protein selection)度量公式来选取关键蛋白质,遍历关键蛋白质的邻居节点,设计蛋白质适应度PFC(protein fitness calculation)来获取关键组蛋白质,利用关键组蛋白质替换种子节点进行蚁群聚类,克服蚁群算法中因大量拾起放下和重复合并过滤操作而导致准确率较低和收敛速度过慢的缺陷;接着设计SI(similarity improvement)度量优化拾起放下概率来对节点进行蚁群聚类进而获得聚类数目;最后将关键蛋白质和通过蚁群聚类得到的聚类数目初始化FCM算法,设计隶属度更新策略来优化隶属度的更新,同时提出兼顾类内距和类间距的FCM迭代目标函数,最终利用改进的FCM完成复合物的识别。将FAC-PC算法应用在DIP数据上进行复合物的识别,实验结果表明FAC-PC算法的准确率和召回率较高,能够较准确地识别蛋白质复合物。展开更多
文摘针对Mapreduce机制下算法通信时间占用比过高,实际应用价值受限的情况,提出基于Hadoop二阶段并行c-Means聚类算法用来解决超大数据的分类问题。首先,改进Mapreduce机制下的MPI通信管理方法,采用成员管理协议方式实现成员管理与Mapreduce降低操作的同步化;其次,实行典型个体组降低操作代替全局个体降低操作,并定义二阶段缓冲算法;最后,通过第一阶段的缓冲进一步降低第二阶段Mapreduce操作的数据量,尽可能降低大数据带来的对算法负面影响。在此基础上,利用人造大数据测试集和KDD CUP 99入侵测试集进行仿真,实验结果表明,该算法既能保证聚类精度要求又可有效加快算法运行效率。
文摘针对蚁群融合FCM聚类算法在蛋白质相互作用网络中进行复合物识别的准确率不高、召回率较低以及时间性能不佳等问题进行了研究,提出一种基于模糊蚁群的加权蛋白质复合物识别算法FAC-PC(algorithm for identifying weighted protein complexes based on fuzzy ant colony clustering)。首先,融合边聚集系数与基因共表达的皮尔森相关系数构建加权网络;其次提出EPS(essential protein selection)度量公式来选取关键蛋白质,遍历关键蛋白质的邻居节点,设计蛋白质适应度PFC(protein fitness calculation)来获取关键组蛋白质,利用关键组蛋白质替换种子节点进行蚁群聚类,克服蚁群算法中因大量拾起放下和重复合并过滤操作而导致准确率较低和收敛速度过慢的缺陷;接着设计SI(similarity improvement)度量优化拾起放下概率来对节点进行蚁群聚类进而获得聚类数目;最后将关键蛋白质和通过蚁群聚类得到的聚类数目初始化FCM算法,设计隶属度更新策略来优化隶属度的更新,同时提出兼顾类内距和类间距的FCM迭代目标函数,最终利用改进的FCM完成复合物的识别。将FAC-PC算法应用在DIP数据上进行复合物的识别,实验结果表明FAC-PC算法的准确率和召回率较高,能够较准确地识别蛋白质复合物。