This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transve...This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transverse vibration of plate structure with general elastically restrained boundary conditions. A linear combination of a double Fourier series and eight auxiliary terms was sought as the admissible function of the flexural displacement of the plate, each term being a combination of a polynomial function and a single cosine series expansion. The auxiliary terms were introduced to ensure and improve the smoothness of the original displacement function and its derivatives at the boundaries. Several numerical examples were given to demonstrate the validity and accuracy of the current solution. The influences of translational and rotational stiffness on the natural frequencies and mode shapes of plate were analyzed by numerical results. The results show that the translational stiffness has bigger influence on the natural frequencies than the rotational stiffness. It is generally well known that little change of the rotational stiffness has little influence on the mode shapes of plate. However, the current work shows that a very little change of rotational stiffness value may lead to a large change of the mode shapes of a square plate structure.展开更多
AZ31B magnesium alloy was subjected to friction stir welding with various welding parameters. The equivalent Young's moduli of the friction stir welded samples and the base material were obtained by the three-poin...AZ31B magnesium alloy was subjected to friction stir welding with various welding parameters. The equivalent Young's moduli of the friction stir welded samples and the base material were obtained by the three-point method, and their transverse rigidities were obtained as well. Furthermore, the sound transmission characteristics of those samples were experimentally studied by four-microphone impedance tube method. The experimental results indicate that the transverse rigidities of the friction stir welded samples were only 79%, 83% and 92% of those of the base material, respectively. The sound transmission losses of the processed samples were also lower, which was largely due to the reduction of transverse rigidities induced by the decrease of equivalent Young's moduli.展开更多
A comparative study of two pre-stressed girder bridges, one with AASHTO (American Association of State Highway and Transportation Officials) Type III girders and the other with new FIB (Florida l-beam) girders, is...A comparative study of two pre-stressed girder bridges, one with AASHTO (American Association of State Highway and Transportation Officials) Type III girders and the other with new FIB (Florida l-beam) girders, is presented. FIB girders are expected to provide increased lateral stiffness, higher load carrying capacity, cost-efficiency and better reliability. In this paper, the first bridge that is analyzed is a 3-span bridge designed with six AASHTO Type III girders, and the second bridge has four FIB girders with the same span length, width and girder depth. The bridges are analyzed for Florida state legal loads SU4 and C5. Both bridges are analyzed using a sophisticated finite element method. The deflections, moment envelopes, section capacity and live load rating of the two bridges are obtained and compared. FIB girders have higher vertical stiffness, higher section capacity providing higher load rating than the AASHTO girders.展开更多
基金the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No.200802171009)+2 种基金Natural Science Foundation of Heilongjiang Province (No.E200944)Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transverse vibration of plate structure with general elastically restrained boundary conditions. A linear combination of a double Fourier series and eight auxiliary terms was sought as the admissible function of the flexural displacement of the plate, each term being a combination of a polynomial function and a single cosine series expansion. The auxiliary terms were introduced to ensure and improve the smoothness of the original displacement function and its derivatives at the boundaries. Several numerical examples were given to demonstrate the validity and accuracy of the current solution. The influences of translational and rotational stiffness on the natural frequencies and mode shapes of plate were analyzed by numerical results. The results show that the translational stiffness has bigger influence on the natural frequencies than the rotational stiffness. It is generally well known that little change of the rotational stiffness has little influence on the mode shapes of plate. However, the current work shows that a very little change of rotational stiffness value may lead to a large change of the mode shapes of a square plate structure.
基金Supported by the National Technology Research and Development Program in the 12th Five-Year Plan of China(No.2011BAE22B05)Canada-China-USA Collaborative Research and Development Project(No.2011DFA50900)
文摘AZ31B magnesium alloy was subjected to friction stir welding with various welding parameters. The equivalent Young's moduli of the friction stir welded samples and the base material were obtained by the three-point method, and their transverse rigidities were obtained as well. Furthermore, the sound transmission characteristics of those samples were experimentally studied by four-microphone impedance tube method. The experimental results indicate that the transverse rigidities of the friction stir welded samples were only 79%, 83% and 92% of those of the base material, respectively. The sound transmission losses of the processed samples were also lower, which was largely due to the reduction of transverse rigidities induced by the decrease of equivalent Young's moduli.
文摘A comparative study of two pre-stressed girder bridges, one with AASHTO (American Association of State Highway and Transportation Officials) Type III girders and the other with new FIB (Florida l-beam) girders, is presented. FIB girders are expected to provide increased lateral stiffness, higher load carrying capacity, cost-efficiency and better reliability. In this paper, the first bridge that is analyzed is a 3-span bridge designed with six AASHTO Type III girders, and the second bridge has four FIB girders with the same span length, width and girder depth. The bridges are analyzed for Florida state legal loads SU4 and C5. Both bridges are analyzed using a sophisticated finite element method. The deflections, moment envelopes, section capacity and live load rating of the two bridges are obtained and compared. FIB girders have higher vertical stiffness, higher section capacity providing higher load rating than the AASHTO girders.