This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial d...This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).展开更多
By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three...By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations.The formulation includes a complete set of transformed stress–potential and displacement–potential relations,with utilizing Fourier series and Hankel transforms.As illustrations,the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions.Because of complicated integrand functions,the integrals are evaluated numerically and for numerical computation of the integrals,a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration.Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions.Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized.展开更多
BBU(Beam breakup)instability once appeared in the early stage of 'Dragon-Ⅰ' LIA,which was excited by TM_(110)mode stimulated when the eccentric beam passed through the multi-functional cavity(MFC).The radio f...BBU(Beam breakup)instability once appeared in the early stage of 'Dragon-Ⅰ' LIA,which was excited by TM_(110)mode stimulated when the eccentric beam passed through the multi-functional cavity(MFC).The radio frequency characteristics of MFC were analyzed with three methods such as analytic calculation,numerical computation,and measurement.The frequency of the TM_(110)mode from these methods agreed with the experimental results,while the transverse coupling impedance was different from the experimental results by some times.The main BBU exciter was the big transverse coupling impedance of the MFC which could be concluded.A grid was designed to shield the gap of the MFC.The experiments show that the BBU was compressed and the high frequency oscillation disappeared.展开更多
基金Project (Nos. 10472102 and 10432030) supported by the NationalNatural Science Foundation of China
文摘This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).
文摘By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations.The formulation includes a complete set of transformed stress–potential and displacement–potential relations,with utilizing Fourier series and Hankel transforms.As illustrations,the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions.Because of complicated integrand functions,the integrals are evaluated numerically and for numerical computation of the integrals,a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration.Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions.Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized.
文摘BBU(Beam breakup)instability once appeared in the early stage of 'Dragon-Ⅰ' LIA,which was excited by TM_(110)mode stimulated when the eccentric beam passed through the multi-functional cavity(MFC).The radio frequency characteristics of MFC were analyzed with three methods such as analytic calculation,numerical computation,and measurement.The frequency of the TM_(110)mode from these methods agreed with the experimental results,while the transverse coupling impedance was different from the experimental results by some times.The main BBU exciter was the big transverse coupling impedance of the MFC which could be concluded.A grid was designed to shield the gap of the MFC.The experiments show that the BBU was compressed and the high frequency oscillation disappeared.