This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obt...This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obtained by partitioning the two-dimensional transistor into two one-dimensional problems coupled by the parametric sur- face-electric-potential. Total and component output and transfer currents and conductances versus D. C. voltages from the drift-diffusion theory, and their deviations from the electrochemical (quasi-Fermi) potential-gradient theory,are presented over practical ranges of thicknesses of the silicon base and gate oxide. A substantial contri- bution from the longitudinal gradient of the square of the transverse electric field is shown.展开更多
Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based n...Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.展开更多
The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite el...The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite element(FE) model. The measured and calculated responses of the embankment and foundation exposed to road widening include the settlement,horizontal displacement,pore water pressure,and shear stresses. It is found that the road widening changed the transverse slope of the original pavement surface resulting from the nonuniform settlements. The maximum horizontal movement is found to be located at the shoulder of the original embankment. Although the difference is small,it is clearly seen that the geosynthetic reinforcement reduces the nonuniform settlements and horizontal movements due to road widening. Thus the reinforcement reduces the potential of pavement cracking and increases the stability of the embankment on soft ground in road widening.展开更多
A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it ...A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.展开更多
The numerical method for computing the live load distribution coefficients in bridge decks is presented. The grillage analogy for representation of bridge decks is adopted in determining the general behavior under tra...The numerical method for computing the live load distribution coefficients in bridge decks is presented. The grillage analogy for representation of bridge decks is adopted in determining the general behavior under traffic loads. The principles of Maxwell's reciprocal theorem are developed in computing live load distribution coefficients and their influence lines. The presented method uses the approach developed in traditional methods of transversal live load distribution but bridge decks are modeled more realistic with the help of well-established grillage analogy. Simple numerical programs for grillage analysis can be used and no special software is needed. While computing the distribution coefficients for a bridge deck the rest of the analysis can be performed with habitual procedures of structural mechanics.展开更多
Surface Penetrating Radar (SPR) is a recently developed technology for non-destructive testing. It can be used to image and interpret the inner structure of the reinforced concrete. This paper gives the details about ...Surface Penetrating Radar (SPR) is a recently developed technology for non-destructive testing. It can be used to image and interpret the inner structure of the reinforced concrete. This paper gives the details about a compact and handheld SPR developed recently for reinforced concrete structure detection. The center operation frequency of the radar is 1.6 GHz. Not only it has fast acquisition ability, but also it can display the testing result on the LCD screen in real-time. The testing results show that the radar has a penetrating range of more than 30 cm, and a lateral resolution better than 5 cm. The performance validates that the radar can meet the application requirements for reinforced concrete structure detection.展开更多
It is known from our former theoretical analysis that the single-inclined welding surface which is inclined towards the transverse direction of the rail can only eliminate vertical bumping, and the single-inclined wel...It is known from our former theoretical analysis that the single-inclined welding surface which is inclined towards the transverse direction of the rail can only eliminate vertical bumping, and the single-inclined welding surface which is inclined towards the vertical direction of the rail can only eliminate lateral vibration. In this paper, we put forward a welding structure of double-inclined welding surface to eliminate the vertical bumping and lateral vibration at the same time, and analyze the stress state of continuous welded rail (CWR) by combining geometrical azimuth. Furthermore, the increase of bearing capacity of CWR with the double-inclined welding surface is theoretically analyzed.展开更多
文摘This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obtained by partitioning the two-dimensional transistor into two one-dimensional problems coupled by the parametric sur- face-electric-potential. Total and component output and transfer currents and conductances versus D. C. voltages from the drift-diffusion theory, and their deviations from the electrochemical (quasi-Fermi) potential-gradient theory,are presented over practical ranges of thicknesses of the silicon base and gate oxide. A substantial contri- bution from the longitudinal gradient of the square of the transverse electric field is shown.
基金Project(51778482)supported by the National Natural Science Foundation of China。
文摘Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.
基金Project(200231800032) supported by Research on Transportation Construction in Western, China
文摘The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite element(FE) model. The measured and calculated responses of the embankment and foundation exposed to road widening include the settlement,horizontal displacement,pore water pressure,and shear stresses. It is found that the road widening changed the transverse slope of the original pavement surface resulting from the nonuniform settlements. The maximum horizontal movement is found to be located at the shoulder of the original embankment. Although the difference is small,it is clearly seen that the geosynthetic reinforcement reduces the nonuniform settlements and horizontal movements due to road widening. Thus the reinforcement reduces the potential of pavement cracking and increases the stability of the embankment on soft ground in road widening.
基金Projects(SKLGP2012K024,SKLGP2013K012)supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Ceoenvironment Protection,ChinaProject(2011BAK12B03)supported by the National Technology Project,ChinaProject(41401004)supported by the National Natural Science Foundation of China
文摘A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.
文摘The numerical method for computing the live load distribution coefficients in bridge decks is presented. The grillage analogy for representation of bridge decks is adopted in determining the general behavior under traffic loads. The principles of Maxwell's reciprocal theorem are developed in computing live load distribution coefficients and their influence lines. The presented method uses the approach developed in traditional methods of transversal live load distribution but bridge decks are modeled more realistic with the help of well-established grillage analogy. Simple numerical programs for grillage analysis can be used and no special software is needed. While computing the distribution coefficients for a bridge deck the rest of the analysis can be performed with habitual procedures of structural mechanics.
文摘Surface Penetrating Radar (SPR) is a recently developed technology for non-destructive testing. It can be used to image and interpret the inner structure of the reinforced concrete. This paper gives the details about a compact and handheld SPR developed recently for reinforced concrete structure detection. The center operation frequency of the radar is 1.6 GHz. Not only it has fast acquisition ability, but also it can display the testing result on the LCD screen in real-time. The testing results show that the radar has a penetrating range of more than 30 cm, and a lateral resolution better than 5 cm. The performance validates that the radar can meet the application requirements for reinforced concrete structure detection.
基金supported by the Major Research Project of Ministry of Railway of China (Grant No. 2010G006-H)
文摘It is known from our former theoretical analysis that the single-inclined welding surface which is inclined towards the transverse direction of the rail can only eliminate vertical bumping, and the single-inclined welding surface which is inclined towards the vertical direction of the rail can only eliminate lateral vibration. In this paper, we put forward a welding structure of double-inclined welding surface to eliminate the vertical bumping and lateral vibration at the same time, and analyze the stress state of continuous welded rail (CWR) by combining geometrical azimuth. Furthermore, the increase of bearing capacity of CWR with the double-inclined welding surface is theoretically analyzed.