In order to achieve uniform mixing between spray droplets and crossflow, cold-model experiment of a hollow-cone water spray in an air crossflow is investigated via a numerical simulation. The simulation cases are desi...In order to achieve uniform mixing between spray droplets and crossflow, cold-model experiment of a hollow-cone water spray in an air crossflow is investigated via a numerical simulation. The simulation cases are designed by using the orthogonal design method. The Eulerian-Lagrangian formulation is employed for modeling the droplets-crossflow two-phase flow while the realizable k-ε turbulence model is used to describe the turbulence. A new index, mixedness quality, is proposed to assess the overall mixing of the droplets in the crossflow. The simulation results demonstrate that the counter-rotating vortex pair (CVP) imposes a more significant impact on the spatial distribution than on the size distribution of the droplets. Pairs of CVP with smaller scales are preferable for achieving a better mixing. The influencing factors are listed in the following order in terms of the degree of their impact from the greatest to the least: the Sauter diameter of the initial droplets, the mixing tube diameter, the spray angle, the velocity of the inlet crossflow, and the vertical velocity of the initial droplets. A moderate droplet diameter, a smaller tube diameter, a moderate spray angle, a greater crossflow velocity and a moderate vertical velocity of the droplet are favorable for achieving a higher mixedness quality of the jet spray in a confined crossflow.展开更多
We study the macromixing behavior of single and multi-orifice-impinging transverse(MOIT) jet mixers with crossflow, in particular, the overall mixing time and the back-splash mixing time of the injected flow with the ...We study the macromixing behavior of single and multi-orifice-impinging transverse(MOIT) jet mixers with crossflow, in particular, the overall mixing time and the back-splash mixing time of the injected flow with the crossflow, using the PLIF technique. It is found that for a given mixer configuration, there is a critical jet-tocrossflow velocity ratio rcat which the back-splash begins to occur. Further increase in the velocity ratio r leads to sharp increase in the back-splash mixing time, which can offset the intensification of the downstream mixing. The dimensionless overall mixing time decreases as r increases to reach either a plateau or a local minimum, and the corresponding r value represents the optimal velocity ratio roptfor the macromixing. The momentum ratio of the two liquid streams is a key factor determining rcand ropt. For a larger scale mixer, a higher momentum ratio is required to achieve the optimal macromixing with the minimum dimensionless overall mixing time.展开更多
An experiment was carried out to investigate the relation of the maximum velocity of air passing through narrowest passage, mass flux of spray water in one square meter in one hour and the pressure drop of tube bundle...An experiment was carried out to investigate the relation of the maximum velocity of air passing through narrowest passage, mass flux of spray water in one square meter in one hour and the pressure drop of tube bundles. Twelve equations were obtained for the relation. The results show that the pressure drop of the tube bundles increases with increase of the maximum velocity of air and the mass flux of spray water. Comparing the pressure drop of the bare tube bundles with that of the film-enhanced tube bundles, it is found that the pressure drop of the film-enhanced tube bundles is lower about 11% and the surface roughness of the film-enhanced plates is a main factor that influences the pressure drop. The data and method obtained in the paper can be used to compute the pressure drop of the film-enhanced tube bundles and is helpful for selection of fan.展开更多
Almost all works in the field of boundary layer flow under the breaking wave consider the flow similar as the flow in an oscillating pressure tube. Although the two flows are similar, there are many differences. The r...Almost all works in the field of boundary layer flow under the breaking wave consider the flow similar as the flow in an oscillating pressure tube. Although the two flows are similar, there are many differences. The results achieved in such manner are therefore also only similar to the results that can be achieved during measurements in the surf zone. Present article deals with boundary layer measurements on an inclined bottom under breaking waves. The measurements over the whole wave cycle were carried out, and the shear velocity under the breaking wave was calculated based on the measurements. It was found that there is a considerable space and time variation of the term in the surf zone. The turbulence generated during the wave breaking changes the shape of the shear velocity profile in comparison to the profile measured before breaking. As the values of shear velocity are directly correlated with the description of the whole velocity field in the wave, it can be assumed that the enhanced description of the shear velocity results in better understanding of the whole velocity field under breaking waves. Therefore, the article brings a new insight into the field and aims to make a discussion about the need to rethink the way of describing the boundary layer flow in the surf zone.展开更多
A computational investigation of the unsteady separation behavior of rigid bodies in Mach-4 flow is carried out. Two rigid bodies, a sphere and a cube, initially stationary, centroid axially aligned, are released and ...A computational investigation of the unsteady separation behavior of rigid bodies in Mach-4 flow is carried out. Two rigid bodies, a sphere and a cube, initially stationary, centroid axially aligned, are released and thereafter fly freely according to the aerodynamic forces experienced. During the separation process, the smaller cube can experience different types of movement and our principal interest here is the non-dimensional transverse velocity of it. The separation behavior is investigated for interactions between a sphere and a cube with different mass ratio and a constant initial distance between them. The qualitative separation behavior and the final transverse velocity of the small body are found to vary strongly with the mass ratio but less sensitive to the initial distance between the two bodies. At a critical mass ratio for a given distance, the smaller body transit from entrainment within the flow region bounded by the larger body's shock to expulsion and the accumulated transverse velocity of the small body is close to maximum. This phenomenon is the so-called ‘shock-wave surfing' phenomenon noted by Laurence & Deiterding for two spheres at hypersonic Mach numbers. Then we investigate the separation behavior of a sphere interaction with a rotary cube and with a non-rotary cube for a given mass ratio and different distance between them. The rotary is found to increase the likelihood of ‘surfing'. Only at a certain initial distance for a given mass ratio the rotary effect of cube can be neglectable.展开更多
基金Supported by the National Natural Science Foundation of China(50823002)
文摘In order to achieve uniform mixing between spray droplets and crossflow, cold-model experiment of a hollow-cone water spray in an air crossflow is investigated via a numerical simulation. The simulation cases are designed by using the orthogonal design method. The Eulerian-Lagrangian formulation is employed for modeling the droplets-crossflow two-phase flow while the realizable k-ε turbulence model is used to describe the turbulence. A new index, mixedness quality, is proposed to assess the overall mixing of the droplets in the crossflow. The simulation results demonstrate that the counter-rotating vortex pair (CVP) imposes a more significant impact on the spatial distribution than on the size distribution of the droplets. Pairs of CVP with smaller scales are preferable for achieving a better mixing. The influencing factors are listed in the following order in terms of the degree of their impact from the greatest to the least: the Sauter diameter of the initial droplets, the mixing tube diameter, the spray angle, the velocity of the inlet crossflow, and the vertical velocity of the initial droplets. A moderate droplet diameter, a smaller tube diameter, a moderate spray angle, a greater crossflow velocity and a moderate vertical velocity of the droplet are favorable for achieving a higher mixedness quality of the jet spray in a confined crossflow.
基金Supported by the National Natural Science Foundation of China(21476048,21006011)the Fundamental Research Funds for the Central University(104.205.2.5)
文摘We study the macromixing behavior of single and multi-orifice-impinging transverse(MOIT) jet mixers with crossflow, in particular, the overall mixing time and the back-splash mixing time of the injected flow with the crossflow, using the PLIF technique. It is found that for a given mixer configuration, there is a critical jet-tocrossflow velocity ratio rcat which the back-splash begins to occur. Further increase in the velocity ratio r leads to sharp increase in the back-splash mixing time, which can offset the intensification of the downstream mixing. The dimensionless overall mixing time decreases as r increases to reach either a plateau or a local minimum, and the corresponding r value represents the optimal velocity ratio roptfor the macromixing. The momentum ratio of the two liquid streams is a key factor determining rcand ropt. For a larger scale mixer, a higher momentum ratio is required to achieve the optimal macromixing with the minimum dimensionless overall mixing time.
基金Acknowledgement: The study is supported by the National Nature Science Foundation. Patent code is 200620098211.4.
文摘An experiment was carried out to investigate the relation of the maximum velocity of air passing through narrowest passage, mass flux of spray water in one square meter in one hour and the pressure drop of tube bundles. Twelve equations were obtained for the relation. The results show that the pressure drop of the tube bundles increases with increase of the maximum velocity of air and the mass flux of spray water. Comparing the pressure drop of the bare tube bundles with that of the film-enhanced tube bundles, it is found that the pressure drop of the film-enhanced tube bundles is lower about 11% and the surface roughness of the film-enhanced plates is a main factor that influences the pressure drop. The data and method obtained in the paper can be used to compute the pressure drop of the film-enhanced tube bundles and is helpful for selection of fan.
文摘Almost all works in the field of boundary layer flow under the breaking wave consider the flow similar as the flow in an oscillating pressure tube. Although the two flows are similar, there are many differences. The results achieved in such manner are therefore also only similar to the results that can be achieved during measurements in the surf zone. Present article deals with boundary layer measurements on an inclined bottom under breaking waves. The measurements over the whole wave cycle were carried out, and the shear velocity under the breaking wave was calculated based on the measurements. It was found that there is a considerable space and time variation of the term in the surf zone. The turbulence generated during the wave breaking changes the shape of the shear velocity profile in comparison to the profile measured before breaking. As the values of shear velocity are directly correlated with the description of the whole velocity field in the wave, it can be assumed that the enhanced description of the shear velocity results in better understanding of the whole velocity field under breaking waves. Therefore, the article brings a new insight into the field and aims to make a discussion about the need to rethink the way of describing the boundary layer flow in the surf zone.
基金supported by the National Natural Science Foundation of China(Grant No.11372068)the National Basic Research Program of China("973"Project)(Grant No.2014CB-744104)
文摘A computational investigation of the unsteady separation behavior of rigid bodies in Mach-4 flow is carried out. Two rigid bodies, a sphere and a cube, initially stationary, centroid axially aligned, are released and thereafter fly freely according to the aerodynamic forces experienced. During the separation process, the smaller cube can experience different types of movement and our principal interest here is the non-dimensional transverse velocity of it. The separation behavior is investigated for interactions between a sphere and a cube with different mass ratio and a constant initial distance between them. The qualitative separation behavior and the final transverse velocity of the small body are found to vary strongly with the mass ratio but less sensitive to the initial distance between the two bodies. At a critical mass ratio for a given distance, the smaller body transit from entrainment within the flow region bounded by the larger body's shock to expulsion and the accumulated transverse velocity of the small body is close to maximum. This phenomenon is the so-called ‘shock-wave surfing' phenomenon noted by Laurence & Deiterding for two spheres at hypersonic Mach numbers. Then we investigate the separation behavior of a sphere interaction with a rotary cube and with a non-rotary cube for a given mass ratio and different distance between them. The rotary is found to increase the likelihood of ‘surfing'. Only at a certain initial distance for a given mass ratio the rotary effect of cube can be neglectable.