Essential oils (EOs) from Rosemary, Rosmarinus officinalis (Lamiaceae), Orange, Citrus sinensis (Rutaceae), Lavandula, Lavandula angustifolia (Lamiaceae), False Yellowhead, Dittrichia viscosa (Asteraceae) an...Essential oils (EOs) from Rosemary, Rosmarinus officinalis (Lamiaceae), Orange, Citrus sinensis (Rutaceae), Lavandula, Lavandula angustifolia (Lamiaceae), False Yellowhead, Dittrichia viscosa (Asteraceae) and their major components were evaluated against root knot nematode, Meloidogyne incognita and Meloidogynejavanica. Second stage juveniles' (J2) paralysis and egg hatch inhibition were studied, while pulverized plant parts were tested for nematodes biological cycle arrest. All EOs paralyzed J2 and M. incognita were found more sensitive than M javanica with the EC50/4 days calculated at 250, 3,650 and 4,260 12g/mL for 1). viscosa, L. angustifolia and R. officinalis, respectively. Similarly, all EOs inhibited nematodes egg hatch and D. viscosa exhibited the highest inhibition on egg hatch (100% inhibition at 5 μg/mL). A significant influence of constituent terpenes (limonene, 1,8-cineole, linalool, camphor, L-borneol, caryophyllene oxide, β-eudesmol) dose and exposure time was indicated on egg hatch inhibition (56% to 100% at 500 μg/mL and 1,000 μg/mL), while only β-eudesmol achieved paralysis of J2 and specifically against M. incognita (EC50/1d = 50μg/mL). Interestingly, the most active botanical species arresting Meloidogyne spp. biological cycle in soil was C. sinensis (EC50 = 2 mg/g) and the most sensitive nematode species was M. javanica. The larvicidal and egg hatch inhibition activity holds promise towards the optimization of artificial terpene mixtures as novel and effective natural nematicides. Complex interactions of primary compounds and subsequent decomposition derivates compose efficacy profile of soil amendments.展开更多
Citrus sinensis commonly called sweet orange belongs to the family Rutaceae. Nutritionally, it is highly recommended due to its high content of micronutrients. However, the rejection of a large amount of epicarp in na...Citrus sinensis commonly called sweet orange belongs to the family Rutaceae. Nutritionally, it is highly recommended due to its high content of micronutrients. However, the rejection of a large amount of epicarp in nature contributes to the emission of greenhouse gas and the development of leachate which contaminate surface water and groundwater. The aim of this work was to identify the essential oil components from Citrus sinensis epicarp, and then look after the biological activity of these components in order to underline the worth to reuse the Citrus sinensis epicarp as a gainful mean. The essential oil of 4,000 g of Citrus sinensis epicarp was done through the water steam distillation and 0.0287 g of essential oil was obtained; so a yield of 0.0007%. The essential oil was then submitted to gas chromatography-flame ionization detector (GC-F1D). The result revealed that the essential oil was teemed with 28 volatile compounds, including terpene compounds (50%), aldehydes (32%) and alcohols (18%) whose anti-inflammatory, anti-diabetic, larvicidal and antioxidant activities were underlined.展开更多
文摘Essential oils (EOs) from Rosemary, Rosmarinus officinalis (Lamiaceae), Orange, Citrus sinensis (Rutaceae), Lavandula, Lavandula angustifolia (Lamiaceae), False Yellowhead, Dittrichia viscosa (Asteraceae) and their major components were evaluated against root knot nematode, Meloidogyne incognita and Meloidogynejavanica. Second stage juveniles' (J2) paralysis and egg hatch inhibition were studied, while pulverized plant parts were tested for nematodes biological cycle arrest. All EOs paralyzed J2 and M. incognita were found more sensitive than M javanica with the EC50/4 days calculated at 250, 3,650 and 4,260 12g/mL for 1). viscosa, L. angustifolia and R. officinalis, respectively. Similarly, all EOs inhibited nematodes egg hatch and D. viscosa exhibited the highest inhibition on egg hatch (100% inhibition at 5 μg/mL). A significant influence of constituent terpenes (limonene, 1,8-cineole, linalool, camphor, L-borneol, caryophyllene oxide, β-eudesmol) dose and exposure time was indicated on egg hatch inhibition (56% to 100% at 500 μg/mL and 1,000 μg/mL), while only β-eudesmol achieved paralysis of J2 and specifically against M. incognita (EC50/1d = 50μg/mL). Interestingly, the most active botanical species arresting Meloidogyne spp. biological cycle in soil was C. sinensis (EC50 = 2 mg/g) and the most sensitive nematode species was M. javanica. The larvicidal and egg hatch inhibition activity holds promise towards the optimization of artificial terpene mixtures as novel and effective natural nematicides. Complex interactions of primary compounds and subsequent decomposition derivates compose efficacy profile of soil amendments.
文摘Citrus sinensis commonly called sweet orange belongs to the family Rutaceae. Nutritionally, it is highly recommended due to its high content of micronutrients. However, the rejection of a large amount of epicarp in nature contributes to the emission of greenhouse gas and the development of leachate which contaminate surface water and groundwater. The aim of this work was to identify the essential oil components from Citrus sinensis epicarp, and then look after the biological activity of these components in order to underline the worth to reuse the Citrus sinensis epicarp as a gainful mean. The essential oil of 4,000 g of Citrus sinensis epicarp was done through the water steam distillation and 0.0287 g of essential oil was obtained; so a yield of 0.0007%. The essential oil was then submitted to gas chromatography-flame ionization detector (GC-F1D). The result revealed that the essential oil was teemed with 28 volatile compounds, including terpene compounds (50%), aldehydes (32%) and alcohols (18%) whose anti-inflammatory, anti-diabetic, larvicidal and antioxidant activities were underlined.