The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stab...The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stabilized by means of the stem plane, and the thruster is left to stabilize the longitudinal bottom-following error and forward speed. In order to better meet the need of engineering applications, working characteristics of the actuators were sufficiently considered to design the proposed controller. Different from the traditional method, the methodology used to solve the problem is generated by AUV model without a reference orientation, and it deals explicitly with vehicle dynamics and the geometric characteristics of the desired tracking bottom curve. The estimation of systemic uncertainties and disturbances and the pitch velocity PE (persistent excitation) conditions are not required. The stability analysis is given by Lyapunov theorem. Simulation results of a full nonlinear hydrodynamic AUV model are provided to validate the effectiveness and robustness of the proposed controller.展开更多
The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, externa...The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.展开更多
The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unsta...The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.展开更多
基金Project(61174047) supported by the National Natural Science Foundation of ChinaProject(20102304110003) supported by the Doctoral Fund of Ministry of Education of ChinaProject(51316080301) supported by Advanced Research
文摘The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stabilized by means of the stem plane, and the thruster is left to stabilize the longitudinal bottom-following error and forward speed. In order to better meet the need of engineering applications, working characteristics of the actuators were sufficiently considered to design the proposed controller. Different from the traditional method, the methodology used to solve the problem is generated by AUV model without a reference orientation, and it deals explicitly with vehicle dynamics and the geometric characteristics of the desired tracking bottom curve. The estimation of systemic uncertainties and disturbances and the pitch velocity PE (persistent excitation) conditions are not required. The stability analysis is given by Lyapunov theorem. Simulation results of a full nonlinear hydrodynamic AUV model are provided to validate the effectiveness and robustness of the proposed controller.
基金Project(51409061)supported by the National Natural Science Foundation of ChinaProject(2013M540271)supported by China Postdoctoral Science Foundation+1 种基金Project(LBH-Z13055)supported by Heilongjiang Postdoctoral Financial Assistance,ChinaProject(HEUCFD1403)supported by Basic Research Foundation of Central Universities,China
文摘The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.
基金Projects(61074112,60674044) supported by the National Natural Science Foundation of China
文摘The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.