广义次成分分析(generalized minor component analysis, GMCA)在现代信号处理的许多领域具有重要作用.目前现有的大多算法不能同时具备与算法对应的信息准则,以及收敛性、自稳定性和多个广义次成分提取的性能.针对上述问题,利用一种新...广义次成分分析(generalized minor component analysis, GMCA)在现代信号处理的许多领域具有重要作用.目前现有的大多算法不能同时具备与算法对应的信息准则,以及收敛性、自稳定性和多个广义次成分提取的性能.针对上述问题,利用一种新的信息传播规则,推导出一种广义次成分提取算法,并采用确定离散时间方法(deterministic discrete time, DDT)对算法的全局收敛性能进行分析;同时,通过理论分析算法的收敛性能与算法初始状态的关系,表明算法具有自稳定性.进一步地,探索了算法在多重广义次成分提取方面的应用.相比之前的算法,所提算法具有更快的收敛速度. Matlab仿真验证了所提出算法的各项性能.展开更多
Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluatio...Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluation is introduced to make decision in slicing schemes for a processing part. The application in determining the slicing scheme for a computer mouse during prototyping shows that the method increases the rationality during decision- making and improves quality and efficiency for the prototyping part.展开更多
Online monitoring of chemical process performance is extremely important to ensure the safety of a chemical plant and consistently high quality of products. Multivariate statistical process control has found wide appl...Online monitoring of chemical process performance is extremely important to ensure the safety of a chemical plant and consistently high quality of products. Multivariate statistical process control has found wide applications in process performance analysis, monitoring and fault diagnosis using existing rich historical database.In this paper, we propose a simple and straight forward multivariate statistical modeling based on a moving window MPCA (multiway principal component analysis) model along the time and batch axis for adaptive monitoring the progress of batch processes in real-time. It is an extension to minimum window MPCA and traditional MPCA.The moving window MPCA along the batch axis can copy seamlessly with variable run length and does not need to estimate any deviations of the ongoing batch from the average trajectories. It replaces an invariant fixed-model monitoring approach with adaptive updating model data structure within batch-to-batch, which overcomes the changing operation condition and slows time-varying behaviors of industrial processes. The software based on moving window MPCA has been successfully applied to the industrial polymerization reactor of polyvinyl chloride (PVC) process in the Jinxi Chemical Company of China since 1999.展开更多
The high dimensions of hyperspectral imagery have caused burden for further processing. A new Fast Independent Component Analysis (FastICA) approach to dimensionality reduction for hyperspectral imagery is presented. ...The high dimensions of hyperspectral imagery have caused burden for further processing. A new Fast Independent Component Analysis (FastICA) approach to dimensionality reduction for hyperspectral imagery is presented. The virtual dimensionality is introduced to determine the number of dimensions needed to be preserved. Since there is no prioritization among independent components generated by the FastICA,the mixing matrix of FastICA is initialized by endmembers,which were extracted by using unsupervised maximum distance method. Minimum Noise Fraction (MNF) is used for preprocessing of original data,which can reduce the computational complexity of FastICA significantly. Finally,FastICA is performed on the selected principal components acquired by MNF to generate the expected independent components in accordance with the order of endmembers. Experimental results demonstrate that the proposed method outperforms second-order statistics-based transforms such as principle components analysis.展开更多
OBJECTIVE: To analyze the component law of Chinese medicines in fuming-washing therapy for knee osteoarthritis(KOA), and develop new fuming-washing prescriptions for KOA through unsupervised data mining methods.METHOD...OBJECTIVE: To analyze the component law of Chinese medicines in fuming-washing therapy for knee osteoarthritis(KOA), and develop new fuming-washing prescriptions for KOA through unsupervised data mining methods.METHODS: Chinese medicine recipes for fuming-washing therapy for KOA were collected and recorded in a database. The correlation coefficient among herbs, core combinations of herbs, andnew prescriptions were analyzed using modified mutual information, complex system entropy cluster, and unsupervised hierarchical clustering, respectively.RESULTS: Based on analysis of 345 Chinese medicine recipes for fuming-washing therapy, 68 herbs occurred frequently, 33 herb pairs occurred frequently, and 12 core combinations were found.Five new fuming-washing recipes for KOA were developed.CONCLUSION: Chinese medicines for fuming-washing therapy of KOA mainly consist of wind-dampness-dispelling and cold-dispersing herbs, blood-activating and stasis-resolving herbs,and wind-dampness-dispelling and heat-clearing herbs. The treatment of fuming-washing therapy for KOA also includes dispelling wind-dampness and dispersing cold, activating blood and resolving stasis, and dispelling wind-dampness and clearing heat. Zhenzhutougucao(Herba Speranskiae Tuberculatae), Honghua(Flos Carthami), Niuxi(Radix Achyranthis Bidentatae), Shenjincao(Herba Lycopodii Japonici), Weilingxian(Radix et Rhizoma Clematidis Chinensis), Chuanwu(Radix Aconiti), Haitongpi(Cortex Erythrinae Variegatae), Ruxiang(Olibanum),Danggui(Radix Angelicae Sinensis), Caowu(Radix Aconiti Kusnezoffii), Moyao(Myrrha), and Aiye(Folium Artemisiae Argyi) are the main herbs used in the fuming-washing treatment for KOA.展开更多
文摘广义次成分分析(generalized minor component analysis, GMCA)在现代信号处理的许多领域具有重要作用.目前现有的大多算法不能同时具备与算法对应的信息准则,以及收敛性、自稳定性和多个广义次成分提取的性能.针对上述问题,利用一种新的信息传播规则,推导出一种广义次成分提取算法,并采用确定离散时间方法(deterministic discrete time, DDT)对算法的全局收敛性能进行分析;同时,通过理论分析算法的收敛性能与算法初始状态的关系,表明算法具有自稳定性.进一步地,探索了算法在多重广义次成分提取方面的应用.相比之前的算法,所提算法具有更快的收敛速度. Matlab仿真验证了所提出算法的各项性能.
基金Supported by the Science and Technology Support Key Project of Jiangsu Province (DE2008365)~~
文摘Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluation is introduced to make decision in slicing schemes for a processing part. The application in determining the slicing scheme for a computer mouse during prototyping shows that the method increases the rationality during decision- making and improves quality and efficiency for the prototyping part.
基金国家重点基础研究发展计划(973计划),国家自然科学基金,the National Natural Science Foundation of China
文摘Online monitoring of chemical process performance is extremely important to ensure the safety of a chemical plant and consistently high quality of products. Multivariate statistical process control has found wide applications in process performance analysis, monitoring and fault diagnosis using existing rich historical database.In this paper, we propose a simple and straight forward multivariate statistical modeling based on a moving window MPCA (multiway principal component analysis) model along the time and batch axis for adaptive monitoring the progress of batch processes in real-time. It is an extension to minimum window MPCA and traditional MPCA.The moving window MPCA along the batch axis can copy seamlessly with variable run length and does not need to estimate any deviations of the ongoing batch from the average trajectories. It replaces an invariant fixed-model monitoring approach with adaptive updating model data structure within batch-to-batch, which overcomes the changing operation condition and slows time-varying behaviors of industrial processes. The software based on moving window MPCA has been successfully applied to the industrial polymerization reactor of polyvinyl chloride (PVC) process in the Jinxi Chemical Company of China since 1999.
基金Supported by the National Natural Science Foundation of China (No. 60572135)
文摘The high dimensions of hyperspectral imagery have caused burden for further processing. A new Fast Independent Component Analysis (FastICA) approach to dimensionality reduction for hyperspectral imagery is presented. The virtual dimensionality is introduced to determine the number of dimensions needed to be preserved. Since there is no prioritization among independent components generated by the FastICA,the mixing matrix of FastICA is initialized by endmembers,which were extracted by using unsupervised maximum distance method. Minimum Noise Fraction (MNF) is used for preprocessing of original data,which can reduce the computational complexity of FastICA significantly. Finally,FastICA is performed on the selected principal components acquired by MNF to generate the expected independent components in accordance with the order of endmembers. Experimental results demonstrate that the proposed method outperforms second-order statistics-based transforms such as principle components analysis.
基金Supported by Grant from the Administration of Traditional Chinese Medicine of Guangdong Province in China(No.20131161)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20124425110004)
文摘OBJECTIVE: To analyze the component law of Chinese medicines in fuming-washing therapy for knee osteoarthritis(KOA), and develop new fuming-washing prescriptions for KOA through unsupervised data mining methods.METHODS: Chinese medicine recipes for fuming-washing therapy for KOA were collected and recorded in a database. The correlation coefficient among herbs, core combinations of herbs, andnew prescriptions were analyzed using modified mutual information, complex system entropy cluster, and unsupervised hierarchical clustering, respectively.RESULTS: Based on analysis of 345 Chinese medicine recipes for fuming-washing therapy, 68 herbs occurred frequently, 33 herb pairs occurred frequently, and 12 core combinations were found.Five new fuming-washing recipes for KOA were developed.CONCLUSION: Chinese medicines for fuming-washing therapy of KOA mainly consist of wind-dampness-dispelling and cold-dispersing herbs, blood-activating and stasis-resolving herbs,and wind-dampness-dispelling and heat-clearing herbs. The treatment of fuming-washing therapy for KOA also includes dispelling wind-dampness and dispersing cold, activating blood and resolving stasis, and dispelling wind-dampness and clearing heat. Zhenzhutougucao(Herba Speranskiae Tuberculatae), Honghua(Flos Carthami), Niuxi(Radix Achyranthis Bidentatae), Shenjincao(Herba Lycopodii Japonici), Weilingxian(Radix et Rhizoma Clematidis Chinensis), Chuanwu(Radix Aconiti), Haitongpi(Cortex Erythrinae Variegatae), Ruxiang(Olibanum),Danggui(Radix Angelicae Sinensis), Caowu(Radix Aconiti Kusnezoffii), Moyao(Myrrha), and Aiye(Folium Artemisiae Argyi) are the main herbs used in the fuming-washing treatment for KOA.