Mobile malware is rapidly increasing and its detection has become a critical issue. In this study, we summarize the common characteristics of this inalicious software on Android platform. We design a detection engine ...Mobile malware is rapidly increasing and its detection has become a critical issue. In this study, we summarize the common characteristics of this inalicious software on Android platform. We design a detection engine consisting of six parts: decompile, grammar parsing, control flow and data flow analysis, safety analysis, and comprehensive evaluation. In the comprehensive evaluation, we obtain a weight vector of 29 evaluation indexes using the analytic hierarchy process. During this process, the detection engine exports a list of suspicious API. On the basis of this list, the evaluation part of the engine performs a compre- hensive evaluation of the hazard assessment of software sample. Finally, hazard classification is given for the software. The false positive rate of our approach for detecting rnalware samples is 4. 7% and normal samples is 7.6%. The experimental results show that the accuracy rate of our approach is almost similar to the method based on virus signatures. Compared with the method based on virus signatures, our approach performs well in detecting unknown malware. This approach is promising for the application of malware detection.展开更多
To investigate the sensitivity of secondary aerosol formation and oxidation capacity to NOx in homogeneous and heterogeneous reactions, a series of irradiated toluene/NOx/air and ?-pinene/NOx/air experiments were cond...To investigate the sensitivity of secondary aerosol formation and oxidation capacity to NOx in homogeneous and heterogeneous reactions, a series of irradiated toluene/NOx/air and ?-pinene/NOx/air experiments were conducted in smog chambers in the absence or presence of Al2O3 seed particles. Various concentrations of NOx and volatile organic compounds(VOCs) were designed to simulate secondary aerosol formation under different scenarios for NOx. Under "VOC-limited" conditions, the increasing NOx concentration suppressed secondary aerosol formation, while the increasing toluene concentration not only contributed to the increase in secondary aerosol formation, but also led to the elevated oxidation degree for the organic aerosol. Sulfate formation was suppressed with the increasing NOx due to a decreased oxidation capacity of the photooxidation system. Secondary organic aerosol(SOA) formation also decreased with the presence of high concentration of NOx, because organo-peroxy radicals(RO2) react with NOx instead of with peroxy radicals(RO2 or HO2), resulting in the formation of volatile organic products. The increasing concentration of NOx enhanced the formation of sulfate, nitrate and SOA under "NOx-limited" conditions, in which the heterogeneous reactions played an important role. In the presence of Al2O3 seed particles, a synergetic promoting effect of mineral dust and NOx on secondary aerosol formation in heterogeneous reactions was observed in the photooxidation. This synergetic effect strengthened the positive relationship between NOx and secondary aerosol formation under "NOx-limited" conditions but weakened or even overturned the negative relationship between NOx and secondary aerosol formation under "VOC-limited" conditions. Sensitivity of secondary aerosol formation to NOx seemed different in homogeneous and heterogeneous reactions, and should be both taken into account in the sensitivity study. The sensitivity of secondary aerosol formation to NOx was further investigated under "winter-like" and NH3-rich conditions. No obvious difference for the sensitivity of secondary aerosol formation except nitrate to NOx was observed.展开更多
The S2 flow path design method of the transonic compressor is used to design the one stage fan in order to replace the original designed blade cascade which has two-stage transonic fan rotors.In the modification desig...The S2 flow path design method of the transonic compressor is used to design the one stage fan in order to replace the original designed blade cascade which has two-stage transonic fan rotors.In the modification design,the camber line is parameterized by a quartic polynomial curve and the thickness distribution of the blade profile is controlled by the double-thrice polynomial.Therefore,the inlet flow has been pre-compressed and the location and intensity of the shock wave at supersonic area have been controlled in order to let the new blade profiles have better aerodynamic performance.The computational results show that the new single stage fan rotor increases the efficiency by two percent at the design condition and the total pressure ratio is slightly higher than that of the original design.At the same time,it also meets the mass flow rate and the geometrical size requirements for the modification design.展开更多
基金supported by Major National Science and Technology Projects(No.3) under Grant No. 2012ZX03002012
文摘Mobile malware is rapidly increasing and its detection has become a critical issue. In this study, we summarize the common characteristics of this inalicious software on Android platform. We design a detection engine consisting of six parts: decompile, grammar parsing, control flow and data flow analysis, safety analysis, and comprehensive evaluation. In the comprehensive evaluation, we obtain a weight vector of 29 evaluation indexes using the analytic hierarchy process. During this process, the detection engine exports a list of suspicious API. On the basis of this list, the evaluation part of the engine performs a compre- hensive evaluation of the hazard assessment of software sample. Finally, hazard classification is given for the software. The false positive rate of our approach for detecting rnalware samples is 4. 7% and normal samples is 7.6%. The experimental results show that the accuracy rate of our approach is almost similar to the method based on virus signatures. Compared with the method based on virus signatures, our approach performs well in detecting unknown malware. This approach is promising for the application of malware detection.
基金supported by the National Natural Science Foundation of China(21407158)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(XDB05010300,XDB05040100,XDB05010200)
文摘To investigate the sensitivity of secondary aerosol formation and oxidation capacity to NOx in homogeneous and heterogeneous reactions, a series of irradiated toluene/NOx/air and ?-pinene/NOx/air experiments were conducted in smog chambers in the absence or presence of Al2O3 seed particles. Various concentrations of NOx and volatile organic compounds(VOCs) were designed to simulate secondary aerosol formation under different scenarios for NOx. Under "VOC-limited" conditions, the increasing NOx concentration suppressed secondary aerosol formation, while the increasing toluene concentration not only contributed to the increase in secondary aerosol formation, but also led to the elevated oxidation degree for the organic aerosol. Sulfate formation was suppressed with the increasing NOx due to a decreased oxidation capacity of the photooxidation system. Secondary organic aerosol(SOA) formation also decreased with the presence of high concentration of NOx, because organo-peroxy radicals(RO2) react with NOx instead of with peroxy radicals(RO2 or HO2), resulting in the formation of volatile organic products. The increasing concentration of NOx enhanced the formation of sulfate, nitrate and SOA under "NOx-limited" conditions, in which the heterogeneous reactions played an important role. In the presence of Al2O3 seed particles, a synergetic promoting effect of mineral dust and NOx on secondary aerosol formation in heterogeneous reactions was observed in the photooxidation. This synergetic effect strengthened the positive relationship between NOx and secondary aerosol formation under "NOx-limited" conditions but weakened or even overturned the negative relationship between NOx and secondary aerosol formation under "VOC-limited" conditions. Sensitivity of secondary aerosol formation to NOx seemed different in homogeneous and heterogeneous reactions, and should be both taken into account in the sensitivity study. The sensitivity of secondary aerosol formation to NOx was further investigated under "winter-like" and NH3-rich conditions. No obvious difference for the sensitivity of secondary aerosol formation except nitrate to NOx was observed.
基金support from National Natural Science Foundation of China (Grant No.50706009)
文摘The S2 flow path design method of the transonic compressor is used to design the one stage fan in order to replace the original designed blade cascade which has two-stage transonic fan rotors.In the modification design,the camber line is parameterized by a quartic polynomial curve and the thickness distribution of the blade profile is controlled by the double-thrice polynomial.Therefore,the inlet flow has been pre-compressed and the location and intensity of the shock wave at supersonic area have been controlled in order to let the new blade profiles have better aerodynamic performance.The computational results show that the new single stage fan rotor increases the efficiency by two percent at the design condition and the total pressure ratio is slightly higher than that of the original design.At the same time,it also meets the mass flow rate and the geometrical size requirements for the modification design.