The maximal number of limit cycles for a particular type Ⅲ system x = -y + lx2 + mxy, y =x(1 + ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting (Annals of Differential Equa...The maximal number of limit cycles for a particular type Ⅲ system x = -y + lx2 + mxy, y =x(1 + ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting (Annals of Differential Equations, 2003,19(3):397-401) are corrected. By translating the system to be considered into the Lienard type and by using some related properties, we obtain several theorems with suitable conditions coefficients of the system, under which we prove that the system has at most two limit cycles. The conclusions improve the results given in Suo and Yue's paper mentioned above.展开更多
Abstract It is proved that the quadratic system with a weak focus and a strong focus has a unique limit cycle around one of the two foci, if there exists simultaneously limit cycles around each of the two foci for the...Abstract It is proved that the quadratic system with a weak focus and a strong focus has a unique limit cycle around one of the two foci, if there exists simultaneously limit cycles around each of the two foci for the system.展开更多
For a class of cubic systems, the authors give a representation of the n th order Liapunov constant through a chain of pseudo-divisions. As an application, the center problem and the isochronous center problem of a pa...For a class of cubic systems, the authors give a representation of the n th order Liapunov constant through a chain of pseudo-divisions. As an application, the center problem and the isochronous center problem of a particular system are considered. They show that the system has a center at the origin if and only if the first seven Liapunov constants vanish, and cannot have an isochronous center at the origin.展开更多
This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous po...This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous polynomials of degree i.Within this class,we identify some new Darboux integrable systems having either a focus or a center at the origin.For such Darboux integrable systems having degrees 5and 9 we give the explicit expressions of their algebraic limit cycles.For the systems having degrees 3,5,7 and 9and restricted to a certain subclass we present necessary and sufficient conditions for being Darboux integrable.展开更多
文摘The maximal number of limit cycles for a particular type Ⅲ system x = -y + lx2 + mxy, y =x(1 + ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting (Annals of Differential Equations, 2003,19(3):397-401) are corrected. By translating the system to be considered into the Lienard type and by using some related properties, we obtain several theorems with suitable conditions coefficients of the system, under which we prove that the system has at most two limit cycles. The conclusions improve the results given in Suo and Yue's paper mentioned above.
文摘Abstract It is proved that the quadratic system with a weak focus and a strong focus has a unique limit cycle around one of the two foci, if there exists simultaneously limit cycles around each of the two foci for the system.
基金supported by the National Natural Science Foundation of China(No.11401285)the Foundation for Research in Experimental Techniques of Liaocheng University(No.LDSY2014110)
文摘For a class of cubic systems, the authors give a representation of the n th order Liapunov constant through a chain of pseudo-divisions. As an application, the center problem and the isochronous center problem of a particular system are considered. They show that the system has a center at the origin if and only if the first seven Liapunov constants vanish, and cannot have an isochronous center at the origin.
基金supported by National Natural Science Foundation of China (Grant No. 11271252)Ministerio de Economiay Competitidad of Spain (Grant No. MTM2008-03437)+2 种基金 Agència de Gestió d’Ajuts Universitaris i de Recerca of Catalonia (Grant No. 2009SGR410)ICREA Academia,Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110073110054)a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme (Grant Nos. FP7-PEOPLE-2012-IRSES-316338 and 318999)
文摘This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous polynomials of degree i.Within this class,we identify some new Darboux integrable systems having either a focus or a center at the origin.For such Darboux integrable systems having degrees 5and 9 we give the explicit expressions of their algebraic limit cycles.For the systems having degrees 3,5,7 and 9and restricted to a certain subclass we present necessary and sufficient conditions for being Darboux integrable.