The effects of microstructural characteristics on the fatigue behavior in Al-Si-Mg alloy were investigated. The dislocation substructures of Al-Si-Mg alloy were observed by transmission electron microscopy (TEM). Di...The effects of microstructural characteristics on the fatigue behavior in Al-Si-Mg alloy were investigated. The dislocation substructures of Al-Si-Mg alloy were observed by transmission electron microscopy (TEM). Dislocation evolution process of α(Al) matrix with [011] orientation of Al-Si-Mg alloy specimens was observed during fatigue process under different stress amplitudes and cycles. The results indicate that dislocation structure is closely dependent on stress amplitudes, and the density of dislocation in failure specimens increases with increasing stress amplitudes. The results show that Mg2Si and secondary silicon phase could have a strong hindrance effect on the movement of dislocations during the fatigue process. The fatigue behavior is strongly dependent on the microstructure of material.展开更多
To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was an...To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was analyzed by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM).The evaluation of intergranular corrosion resistance of the welded joints was conducted by double-loop electrochemical potentiokinetic reactivation(DL-EPR) method,and at the same time the chemical compositions of the corrosion surface were analyzed by energy-dispersive spectrometry (EDS).The results show that p phase has complete coherence relationship withμphase,and the coherent relationship is described as[001]p//■and[430]p//[0001]μ.Theμphase is rapidly transformed from p phase,which is the inhomogeneous phase transformation.The transformation of secondary phase will increase the susceptibility to intergranular corrosion.Therefore,the transformation of secondary phase should be avoided in the welding process.展开更多
The effects of aging treatments on the tensile properties and compressive behavior of a thin-walled 6005 aluminum alloy tube were studied.Samples after three natural aging(NA)conditions were subsequently aged at 180℃...The effects of aging treatments on the tensile properties and compressive behavior of a thin-walled 6005 aluminum alloy tube were studied.Samples after three natural aging(NA)conditions were subsequently aged at 180℃ for 0.5−12.0 h artificial aging(AA).Tensile and compressive tests were performed after AA.The results show that for samples with the same NA,the longer the AA time is,the higher the strengths alloy owns,and at the same time the material shows a much lower elongation and faster process from plastic deformation to fracture.However,with NA prolonging,the alloy exhibits much better plastic deformation ability after AA,though its strength is decreased.The major cause of strength and plasticity variation induced by changing NA time is that the size of the main strengtheningβ''precipitates is larger and the density is lower.This character is evaluated by the strain hardening exponent n.Compressive results show that the optimum energy absorption characteristics can be acquired at a moderate n(14<n<17).Large n(n≥18)results in the fracture of tube during axial compression while low n(n≤13)causes lower energy absorption.展开更多
A theory is presented to predict that a novel type of incoherently coupled spatial soliton families, named anti-dark soliton families, can exist in cubic-quintie nonlinear media. The intensity profiles, associated pha...A theory is presented to predict that a novel type of incoherently coupled spatial soliton families, named anti-dark soliton families, can exist in cubic-quintie nonlinear media. The intensity profiles, associated phase distribution and propagation properties are discussed in detail.展开更多
In this paper a preliminary investigation of a novel optoelectronic polymer, poly (p-phenylene N-4-n-butylphenyl-N,N-bis- 4-vinylenephenylamine) (PNB), is reported. A single layer structure of ITO/PNB/Al was prepared ...In this paper a preliminary investigation of a novel optoelectronic polymer, poly (p-phenylene N-4-n-butylphenyl-N,N-bis- 4-vinylenephenylamine) (PNB), is reported. A single layer structure of ITO/PNB/Al was prepared via spin-coating of PNB solution as a thin film on the top of an ITO substrate, while aluminum top electrode was vacuum evaporated. Dark current- voltage characteristics of this device showed a typical rectifying behaviour. Photovoltaic response under a monochromatic illumination at 420 nm was observed, with an open circuit voltage of 0.3 V and fill factor of 0.21. Spectral response and optical absorption were found to be matched well. It was also discovered that the device showed a green electroluminescent emission at a forward bias. Turn-on voltage of the device was about 6 V and light output about 22.6 nW at a forward bias of 10 V. The work demonstrated that the PNB material might possess dual exciton sites resulting in a competition for excitons to be either separated or recombined. Both effects were associated with each other, which limited the photovoltaic or electroluminescence to some degrees.展开更多
Herein,a novel photonic coordination polymer material was constructed by aggregation-induced emission luminogen(AIEgen)containing a tripyridyl moiety used as the linking ligand.It displayed a spontaneous direct centro...Herein,a novel photonic coordination polymer material was constructed by aggregation-induced emission luminogen(AIEgen)containing a tripyridyl moiety used as the linking ligand.It displayed a spontaneous direct centrosymmetric to noncentrosymmetric phase transition in a single crystal.The two crystals,before and after the phase transition,were both controllably synthesized and characterized by single-crystal X-ray diffraction.After being exposed to air,the centrosymmetric metastable phase(1-α)transitioned to a new stable phase with a noncentrosymmetric structure(1-β).Interestingly,the 1-βstructure exhibited a strong phasematching second-harmonic generation(SHG)response,about4.5 times higher than that of KH2PO4(KDP).In order to better understand the relationship between the structure and the nonlinear optical properties,the dipole moments were calculated and discussed.Remarkably,the noncentrosymmetric phase with high thermal stability for 1-βretained and improved the initial photoluminescent properties of the AIEgen ligand after the structural phase transition from 1-α,and simultaneously produced the excellent SHG property,which are beneficial for the design and construction of excellent optical materials.展开更多
基金Project (2007CB714704) supported by the National Basic Research Program of ChinaProject (50771073) supported by the National Natural Science Foundation of China
文摘The effects of microstructural characteristics on the fatigue behavior in Al-Si-Mg alloy were investigated. The dislocation substructures of Al-Si-Mg alloy were observed by transmission electron microscopy (TEM). Dislocation evolution process of α(Al) matrix with [011] orientation of Al-Si-Mg alloy specimens was observed during fatigue process under different stress amplitudes and cycles. The results indicate that dislocation structure is closely dependent on stress amplitudes, and the density of dislocation in failure specimens increases with increasing stress amplitudes. The results show that Mg2Si and secondary silicon phase could have a strong hindrance effect on the movement of dislocations during the fatigue process. The fatigue behavior is strongly dependent on the microstructure of material.
基金The authors would like to acknowledge the financial support from National Key Research and Development Program of China(2018YFB1107801 and 2018YFB1107802)Science Fund for Creative Research Groups of NSFC(51621064)+1 种基金National Natural Science Foundation of China(51790172)Fundamental Research Funds for the Central University(DUT19LAB06).
文摘To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was analyzed by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM).The evaluation of intergranular corrosion resistance of the welded joints was conducted by double-loop electrochemical potentiokinetic reactivation(DL-EPR) method,and at the same time the chemical compositions of the corrosion surface were analyzed by energy-dispersive spectrometry (EDS).The results show that p phase has complete coherence relationship withμphase,and the coherent relationship is described as[001]p//■and[430]p//[0001]μ.Theμphase is rapidly transformed from p phase,which is the inhomogeneous phase transformation.The transformation of secondary phase will increase the susceptibility to intergranular corrosion.Therefore,the transformation of secondary phase should be avoided in the welding process.
基金Project(2019JJ50054)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(51975201,U1664252)supported by the National Natural Science Foundation of China。
文摘The effects of aging treatments on the tensile properties and compressive behavior of a thin-walled 6005 aluminum alloy tube were studied.Samples after three natural aging(NA)conditions were subsequently aged at 180℃ for 0.5−12.0 h artificial aging(AA).Tensile and compressive tests were performed after AA.The results show that for samples with the same NA,the longer the AA time is,the higher the strengths alloy owns,and at the same time the material shows a much lower elongation and faster process from plastic deformation to fracture.However,with NA prolonging,the alloy exhibits much better plastic deformation ability after AA,though its strength is decreased.The major cause of strength and plasticity variation induced by changing NA time is that the size of the main strengtheningβ''precipitates is larger and the density is lower.This character is evaluated by the strain hardening exponent n.Compressive results show that the optimum energy absorption characteristics can be acquired at a moderate n(14<n<17).Large n(n≥18)results in the fracture of tube during axial compression while low n(n≤13)causes lower energy absorption.
文摘A theory is presented to predict that a novel type of incoherently coupled spatial soliton families, named anti-dark soliton families, can exist in cubic-quintie nonlinear media. The intensity profiles, associated phase distribution and propagation properties are discussed in detail.
基金This work is supported by National Natural Science Foundationof China(20344002,10434030) State Key Program forBasic research of China (2003CB314707)
文摘In this paper a preliminary investigation of a novel optoelectronic polymer, poly (p-phenylene N-4-n-butylphenyl-N,N-bis- 4-vinylenephenylamine) (PNB), is reported. A single layer structure of ITO/PNB/Al was prepared via spin-coating of PNB solution as a thin film on the top of an ITO substrate, while aluminum top electrode was vacuum evaporated. Dark current- voltage characteristics of this device showed a typical rectifying behaviour. Photovoltaic response under a monochromatic illumination at 420 nm was observed, with an open circuit voltage of 0.3 V and fill factor of 0.21. Spectral response and optical absorption were found to be matched well. It was also discovered that the device showed a green electroluminescent emission at a forward bias. Turn-on voltage of the device was about 6 V and light output about 22.6 nW at a forward bias of 10 V. The work demonstrated that the PNB material might possess dual exciton sites resulting in a competition for excitons to be either separated or recombined. Both effects were associated with each other, which limited the photovoltaic or electroluminescence to some degrees.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China(2019D01C059)the National Natural Science Foundation of China(21671003 and 21201005)+4 种基金the High Performance Computing Center of Henan Normal University and the 111 Project(D17007)Xinjiang Program of Cultivation of Young Innovative Technical Talents(2018Q061)the“2018 Tianchi Doctoral Plan”of Xinjiang Uygur Autonomous Region of Chinathe Doctoral Scientific Research Foundation of Anhui Jianzhu University(2017QD15)Xinjiang University.We thank LetPub(www.letpub.com)for its linguistic assistance during the preparation of this manuscript。
文摘Herein,a novel photonic coordination polymer material was constructed by aggregation-induced emission luminogen(AIEgen)containing a tripyridyl moiety used as the linking ligand.It displayed a spontaneous direct centrosymmetric to noncentrosymmetric phase transition in a single crystal.The two crystals,before and after the phase transition,were both controllably synthesized and characterized by single-crystal X-ray diffraction.After being exposed to air,the centrosymmetric metastable phase(1-α)transitioned to a new stable phase with a noncentrosymmetric structure(1-β).Interestingly,the 1-βstructure exhibited a strong phasematching second-harmonic generation(SHG)response,about4.5 times higher than that of KH2PO4(KDP).In order to better understand the relationship between the structure and the nonlinear optical properties,the dipole moments were calculated and discussed.Remarkably,the noncentrosymmetric phase with high thermal stability for 1-βretained and improved the initial photoluminescent properties of the AIEgen ligand after the structural phase transition from 1-α,and simultaneously produced the excellent SHG property,which are beneficial for the design and construction of excellent optical materials.