基于第六次耦合模式比较计划(CMIP6)的模式模拟数据和欧洲宇航局GlobSnow卫星遥感雪水当量(Snow Water Equivalent,SWE)资料,评估了CMIP6耦合模式对1981~2014年欧亚大陆冬季SWE的模拟能力,并应用多模式集合平均结果预估了21世纪欧亚大陆...基于第六次耦合模式比较计划(CMIP6)的模式模拟数据和欧洲宇航局GlobSnow卫星遥感雪水当量(Snow Water Equivalent,SWE)资料,评估了CMIP6耦合模式对1981~2014年欧亚大陆冬季SWE的模拟能力,并应用多模式集合平均结果预估了21世纪欧亚大陆SWE的变化情况。结果表明,CMIP6耦合模式对冬季欧亚大陆中高纬度SWE空间分布具有较好的再现能力,能模拟出欧亚大陆中高纬度SWE的主要分布特征;耦合模式对SWE变化趋势及经验正交函数主要模态特征的模拟能力存在较大差异,但多模式集合能提高模式对SWE变化趋势和主要时空变化特征的模拟能力;此外,多模式集合结果对欧亚大陆冬季SWE与降水、气温的关系也有较好的再现能力。预估结果表明,21世纪欧亚大陆东北大部分地区的SWE均要高于基准期(1995~2014年),而90°E以西的欧洲大陆SWE基本上呈现减少的特征;21世纪早期,4种不同排放情景下积雪变化的差异不大,但21世纪后期积雪变化的幅度差异较大,而且排放越高积雪变化的幅度越大,模式不确定性也越大;进一步的分析表明,欧亚大陆冬季未来积雪变化特征的空间分布与全球变化背景下局地气温、降水的变化密切相关,高温高湿的条件有利于欧亚大陆东北部积雪的增多。展开更多
The potential predictability and skill of Eurasian spring snow water equivalent(SWE)are explored by using a suite of ensemble hindcast experiments with the fourth-generation IAP AGCM(IAP AGCM4)and observations for the...The potential predictability and skill of Eurasian spring snow water equivalent(SWE)are explored by using a suite of ensemble hindcast experiments with the fourth-generation IAP AGCM(IAP AGCM4)and observations for the period 1982–2012.IAP AGCM4 is generally capable of reproducing the spatial distribution of Eurasian spring SWE;nevertheless,the model overestimates the SWE over Eurasia,possibly because of positive precipitation biases in wintertime.IAP AGCM4 can successfully capture the long-term trend and leading pattern of Eurasian spring SWE.Additionally,the spring SWE anomalies are generally predictable in many regions over Eurasia,especially at high latitudes;moreover,IAP AGCM4 exhibits a remarkable prediction skill for spring SWE anomalies over Eurasia in many years during 1982 to 2012.In order to reveal the relative impacts of SST anomalies and atmospheric initial conditions on the seasonal predictability of Eurasian spring SWE,two additional sets of experiments are carried out.Overall,atmospheric initial anomalies have a dominant role,though the impact of SSTs is not negligible.This study highlights the importance of atmospheric initialization in seasonal climate forecasts of spring SWE anomalies,especially at high latitudes.展开更多
文摘基于第六次耦合模式比较计划(CMIP6)的模式模拟数据和欧洲宇航局GlobSnow卫星遥感雪水当量(Snow Water Equivalent,SWE)资料,评估了CMIP6耦合模式对1981~2014年欧亚大陆冬季SWE的模拟能力,并应用多模式集合平均结果预估了21世纪欧亚大陆SWE的变化情况。结果表明,CMIP6耦合模式对冬季欧亚大陆中高纬度SWE空间分布具有较好的再现能力,能模拟出欧亚大陆中高纬度SWE的主要分布特征;耦合模式对SWE变化趋势及经验正交函数主要模态特征的模拟能力存在较大差异,但多模式集合能提高模式对SWE变化趋势和主要时空变化特征的模拟能力;此外,多模式集合结果对欧亚大陆冬季SWE与降水、气温的关系也有较好的再现能力。预估结果表明,21世纪欧亚大陆东北大部分地区的SWE均要高于基准期(1995~2014年),而90°E以西的欧洲大陆SWE基本上呈现减少的特征;21世纪早期,4种不同排放情景下积雪变化的差异不大,但21世纪后期积雪变化的幅度差异较大,而且排放越高积雪变化的幅度越大,模式不确定性也越大;进一步的分析表明,欧亚大陆冬季未来积雪变化特征的空间分布与全球变化背景下局地气温、降水的变化密切相关,高温高湿的条件有利于欧亚大陆东北部积雪的增多。
基金This work was jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA19030403]the National Natural Science Foundation of China[grant number 41575080].
文摘The potential predictability and skill of Eurasian spring snow water equivalent(SWE)are explored by using a suite of ensemble hindcast experiments with the fourth-generation IAP AGCM(IAP AGCM4)and observations for the period 1982–2012.IAP AGCM4 is generally capable of reproducing the spatial distribution of Eurasian spring SWE;nevertheless,the model overestimates the SWE over Eurasia,possibly because of positive precipitation biases in wintertime.IAP AGCM4 can successfully capture the long-term trend and leading pattern of Eurasian spring SWE.Additionally,the spring SWE anomalies are generally predictable in many regions over Eurasia,especially at high latitudes;moreover,IAP AGCM4 exhibits a remarkable prediction skill for spring SWE anomalies over Eurasia in many years during 1982 to 2012.In order to reveal the relative impacts of SST anomalies and atmospheric initial conditions on the seasonal predictability of Eurasian spring SWE,two additional sets of experiments are carried out.Overall,atmospheric initial anomalies have a dominant role,though the impact of SSTs is not negligible.This study highlights the importance of atmospheric initialization in seasonal climate forecasts of spring SWE anomalies,especially at high latitudes.