We investigate the short-time decoherence of a solid-state qubit under Ohmic noise at optimal operation points. The decoherence is analyzed by maximum norm of the deviation density operator. It is shown that at the te...We investigate the short-time decoherence of a solid-state qubit under Ohmic noise at optimal operation points. The decoherence is analyzed by maximum norm of the deviation density operator. It is shown that at the temperature T = 3 mK, the loss of the fidelity due to decoherence is much smaller than the DiVincenzo low decoherence criterion, which means that the mode/may be an optimal candidate of qubit for quantum computation.展开更多
The newly emerged two-dimensional(2D) semiconducting materials, owning to the atomic thick nature and excellent optical and electrical properties, are considered as potential candidates to solve the bottlenecks of tra...The newly emerged two-dimensional(2D) semiconducting materials, owning to the atomic thick nature and excellent optical and electrical properties, are considered as potential candidates to solve the bottlenecks of traditional semiconductors. However, the realization of high performance 2D semiconductorbased field-effect transistors(FETs) has been a longstanding challenge in 2D electronics, which is mainly ascribing to the presence of significant Schottky barrier(SB) at metal-semiconductor interfaces. Here, an additional contact gate is induced in 2D ambipolar FET to realize near ideal reconfigurable FET(RFET)devices without restrictions of SB. Benefitting from the consistently high doping of contact region, the effective SB height can be maintained at ultra-small value during all operation conditions, resulting in the near ideal subthreshold swing(SS) values(132 mV/decade for MoTe2 RFET and 67 mV/decade for WSe2 RFET) and the relatively high mobility(28.6 cm2/(Vs) for MoTe2 RFET and 89.8 cm2/(V s) for WSe2 RFET). Moreover, the flexible control on the doping polarity of contact region enables the remodeling and switching of the achieved unipolar FETs between p-type mode and n-type mode. Based on such reconfigurable behaviors, high gain complementary MoTe2 inverters are further realized. The findings in this work push forward the development of high-performance 2D semiconductor integrated devices and circuits.展开更多
文摘We investigate the short-time decoherence of a solid-state qubit under Ohmic noise at optimal operation points. The decoherence is analyzed by maximum norm of the deviation density operator. It is shown that at the temperature T = 3 mK, the loss of the fidelity due to decoherence is much smaller than the DiVincenzo low decoherence criterion, which means that the mode/may be an optimal candidate of qubit for quantum computation.
基金supported by the National Natural Science Foundation of China (U19A2090, 51902098, 51972105, 51525202, and 61574054)the Hunan Provincial Natural Science Foundation (2018RS3051)。
文摘The newly emerged two-dimensional(2D) semiconducting materials, owning to the atomic thick nature and excellent optical and electrical properties, are considered as potential candidates to solve the bottlenecks of traditional semiconductors. However, the realization of high performance 2D semiconductorbased field-effect transistors(FETs) has been a longstanding challenge in 2D electronics, which is mainly ascribing to the presence of significant Schottky barrier(SB) at metal-semiconductor interfaces. Here, an additional contact gate is induced in 2D ambipolar FET to realize near ideal reconfigurable FET(RFET)devices without restrictions of SB. Benefitting from the consistently high doping of contact region, the effective SB height can be maintained at ultra-small value during all operation conditions, resulting in the near ideal subthreshold swing(SS) values(132 mV/decade for MoTe2 RFET and 67 mV/decade for WSe2 RFET) and the relatively high mobility(28.6 cm2/(Vs) for MoTe2 RFET and 89.8 cm2/(V s) for WSe2 RFET). Moreover, the flexible control on the doping polarity of contact region enables the remodeling and switching of the achieved unipolar FETs between p-type mode and n-type mode. Based on such reconfigurable behaviors, high gain complementary MoTe2 inverters are further realized. The findings in this work push forward the development of high-performance 2D semiconductor integrated devices and circuits.