期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Takagi-Sugeno模糊神经网络的光伏发电功率预测研究
被引量:
3
1
作者
文立
《智能计算机与应用》
2019年第3期118-121,125,共5页
在光伏发电预测中,一般都采用与发电功率正相关因素作为输入变量,这样操作很容易陷入局部最优。文章改变输入变量的选取范围,选取与光伏发电功率正、负相关性较大的因素作为光伏发电预测模型的输入变量,利用模糊系统具有收敛速度较快和...
在光伏发电预测中,一般都采用与发电功率正相关因素作为输入变量,这样操作很容易陷入局部最优。文章改变输入变量的选取范围,选取与光伏发电功率正、负相关性较大的因素作为光伏发电预测模型的输入变量,利用模糊系统具有收敛速度较快和神经网络具有自学习和调整参数容易等优点,提出Takagi-Sugeno模糊神经网络模型应用于光伏发电功率短期预测中,并与BP神经网络预测进行比较,其结果显示,所述预测模型预测精度比BP神经网络预测精度提高了10%。
展开更多
关键词
正、负相关因素
功率预测
模糊神经网络
减法聚类
下载PDF
职称材料
题名
基于Takagi-Sugeno模糊神经网络的光伏发电功率预测研究
被引量:
3
1
作者
文立
机构
湖南理工职业技术学院
湖南省光伏发电系统控制与优化工程实验室
出处
《智能计算机与应用》
2019年第3期118-121,125,共5页
基金
湖南省教育厅资助科研项目(17C0739)
文摘
在光伏发电预测中,一般都采用与发电功率正相关因素作为输入变量,这样操作很容易陷入局部最优。文章改变输入变量的选取范围,选取与光伏发电功率正、负相关性较大的因素作为光伏发电预测模型的输入变量,利用模糊系统具有收敛速度较快和神经网络具有自学习和调整参数容易等优点,提出Takagi-Sugeno模糊神经网络模型应用于光伏发电功率短期预测中,并与BP神经网络预测进行比较,其结果显示,所述预测模型预测精度比BP神经网络预测精度提高了10%。
关键词
正、负相关因素
功率预测
模糊神经网络
减法聚类
Keywords
positive and negative related factors
power prediction
fuzzy neural network
subtraction clustering
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Takagi-Sugeno模糊神经网络的光伏发电功率预测研究
文立
《智能计算机与应用》
2019
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部