This paper presents an up-conversion mixer for 2.4GHz wireless sensor networks in 0. 181xm RF complementary metal-oxide semiconductor (CMOS) technology. It is based on a double-balanced Gilbert cell type. With two G...This paper presents an up-conversion mixer for 2.4GHz wireless sensor networks in 0. 181xm RF complementary metal-oxide semiconductor (CMOS) technology. It is based on a double-balanced Gilbert cell type. With two Gilbert cells it was applied quadrature modulation. Operational ampli- tiers are used in this design to improve the conversion gain under low power consumption. The mixer design is based on 0.18txm RF CMOS process. And the mixer test results indicate that under 1.8V power supply, with input frequency 2.4 - 2.4835GHz, the conversion voltage gain is 1.2 - 2dB. When the output frequency is 2.4GHz, its power gain is -4.46dB, and its input referred 1 dB com- pression point is -11.5dBm and it consumes 1.77mA current.展开更多
基金Supported by the National High Technology Research and Development Program(No.2007AA01Z2A7)the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements(No.BA2010073)
文摘This paper presents an up-conversion mixer for 2.4GHz wireless sensor networks in 0. 181xm RF complementary metal-oxide semiconductor (CMOS) technology. It is based on a double-balanced Gilbert cell type. With two Gilbert cells it was applied quadrature modulation. Operational ampli- tiers are used in this design to improve the conversion gain under low power consumption. The mixer design is based on 0.18txm RF CMOS process. And the mixer test results indicate that under 1.8V power supply, with input frequency 2.4 - 2.4835GHz, the conversion voltage gain is 1.2 - 2dB. When the output frequency is 2.4GHz, its power gain is -4.46dB, and its input referred 1 dB com- pression point is -11.5dBm and it consumes 1.77mA current.