介绍正交信号修正法的基本思想并详细推导该算法的实现步骤,将一种改进后的正交信号修正法(orthogonal signal correction,OSC)与偏最小二乘法(partial least square method,PLS)相结合,对原始数据通过OSC消除正交分量,利用PLS建立中长...介绍正交信号修正法的基本思想并详细推导该算法的实现步骤,将一种改进后的正交信号修正法(orthogonal signal correction,OSC)与偏最小二乘法(partial least square method,PLS)相结合,对原始数据通过OSC消除正交分量,利用PLS建立中长期负荷预测模型。该方法能有效地去除自变量系统中与因变量无关的正交数据信息,增强自变量、因变量之间的相关性,在有限的成分中提高成分解释能力。通过算例将PLS与OSC-PLS进行比较分析,结果表明,运用OSC-PLS进行中长期负荷预测,尽管预测模型提取的成分个数变少了,但模型成分的解释性却大幅度增强,预测精度明显提高,具有较强的实用性。展开更多
现有多跳频信号参数估计方法稀疏线性回归(Sparse Linear Regression,SLR)存在计算量大、内存消耗大的缺点。事实上,频率跳变只在少数几个数据点上发生,大部分数据不包含跳变信息。基于此,提出一种基于正交匹配追踪(Orthogonal Matching...现有多跳频信号参数估计方法稀疏线性回归(Sparse Linear Regression,SLR)存在计算量大、内存消耗大的缺点。事实上,频率跳变只在少数几个数据点上发生,大部分数据不包含跳变信息。基于此,提出一种基于正交匹配追踪(Orthogonal Matching Pursuit,OMP)和SLR相结合的跳频信号参数估计方法。该方法将接收到的样本数据均匀分段,对每段数据用OMP算法预处理,检测出发生频率跳变的数据段以及估计出没有发生跳变的数据段的频率;对这些发生跳变的数据段分别用SLR算法估计得到各段的跳时和频率;拼接可以得到整个样本的跳时、跳频图案等。仿真结果表明,该方法在在保持SLR精确估计性能的同时,能有效减少计算量。展开更多
生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为...生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为校正集,25%的样本作为验证集。采集牛肉新鲜切口处400~1170nm波长范围内的漫反射光谱,用国标方法测定牛肉含水率。经过多元散射校正(multiplicative scatter correction,MSC)、变量标准化(standard normalized variate,SNV)和直接正交信号校正(direct orthogonal signal correction,DOSC)等方法预处理,在400~1170nm范围内分别建立多元线性回归(multiple linear regression,MLR)模型、主成分回归(principal component Regression,PCR)模型和偏最小二乘回归(partial least squares regression,PLSR)模型。结果表明使用MSC预处理方法建立的模型预测效果最佳,其中用PLSR建模结果最好,校正集的相关系数和校正标准差分别是0.92和0.0069,验证集的相关系数和验证标准差分别是0.92和0.0047,外部验证的相关系数和验证标准差分别是0.85和0.0054。结果表明,可见/近红外光谱结合MSC预处理方法建立的PLSR模型,可以对牛肉含水率进行准确的快速无损评价,为生鲜牛肉含水率快速无损检测技术的应用提供理论参考。展开更多
【目的】快速、准确地监测土壤有机质对于精准农业的发展具有重要意义。可见光-近红外(visible and near-infrared,Vis-NIR)光谱技术在土壤属性估算、数字化土壤制图等方面应用较为广泛,然而,在田间进行光谱测量,易受土壤含水量(soil mo...【目的】快速、准确地监测土壤有机质对于精准农业的发展具有重要意义。可见光-近红外(visible and near-infrared,Vis-NIR)光谱技术在土壤属性估算、数字化土壤制图等方面应用较为广泛,然而,在田间进行光谱测量,易受土壤含水量(soil moisture,SM)、温度、土壤表面状况等因素的影响,导致光谱信息中包含大量干扰信息,其中,SM变化是影响光谱观测结果最为显著的因素之一。此研究的目的是探讨OSC算法消除其影响,提升Vis-NIR光谱定量估算土壤有机质(soil organic matter,SOM)的精度。【方法】以江汉平原公安县和潜江市为研究区域,采集217份耕层(0—20 cm)土壤样本,进行风干、研磨、过筛等处理,采用重铬酸钾-外加热法测定SOM;将总体样本划分为3个互不重叠的样本集:建模集S^0(122个样本)、训练集S^1(60个样本)、验证集S^2(35个样本);设计SM梯度试验(梯度间隔为4%),在实验室内获取S^1和S^2样本集的9个梯度SM(0%—32%)的土壤光谱数据;分析SM对土壤Vis-NIR光谱反射率的影响,采用外部参数正交化算法(external parameter orthogonalization,EPO)、正交信号校正算法(orthogonal signal correction,OSC)消除SM对土壤光谱的干扰;利用主成分分析(principal component analysis,PCA)的前两个主成分得分和光谱相关系数两种方法检验消除SM干扰前、后的效果;基于偏最小二乘回归(partial least squares regression,PLSR)方法建立EPO和OSC处理前、后的SOM估算模型,利用决定系数(coefficient of determination,R^2)、均方根误差(root mean square error,RMSE)和RPD(the ratio of prediction to deviation)3个指标比较PLSR、EPO-PLSR、OSC-PLSR模型的性能。【结果】土壤Vis-NIR光谱受SM的影响十分明显,随着SM的增加,土壤光谱反射率呈非线性降低趋势。OSC处理前的湿土光谱数据主成分得分散点相对分散,与干土光谱数据主成分得分空间的位置不重叠,不同SM梯度之间的光谱相关系数变化较大;OSC处理后的湿土光谱数据主成分得分空间的位置基本与干土光谱数据相重合,各样本光谱数据之间相似性很高,不同SM梯度之间的光谱相关系数变化较小。9个SM梯度的EPO-PLSR模型的验证平均R^2_(pre)、RPD分别为0.69、1.7。9个SM梯度的OSC-PLSR模型的验证平均R^2_(pre)、RPD分别为0.72、1.89,校正后的OSC-PLSR模型受SM的较小,有效提升SOM估算模型的精度和鲁棒性。【结论】OSC能够消除SM变化对土壤Vis-NIR光谱的影响,可为将来田间原位实时监测SOM信息提供一定的理论支撑。展开更多
文摘介绍正交信号修正法的基本思想并详细推导该算法的实现步骤,将一种改进后的正交信号修正法(orthogonal signal correction,OSC)与偏最小二乘法(partial least square method,PLS)相结合,对原始数据通过OSC消除正交分量,利用PLS建立中长期负荷预测模型。该方法能有效地去除自变量系统中与因变量无关的正交数据信息,增强自变量、因变量之间的相关性,在有限的成分中提高成分解释能力。通过算例将PLS与OSC-PLS进行比较分析,结果表明,运用OSC-PLS进行中长期负荷预测,尽管预测模型提取的成分个数变少了,但模型成分的解释性却大幅度增强,预测精度明显提高,具有较强的实用性。
文摘现有多跳频信号参数估计方法稀疏线性回归(Sparse Linear Regression,SLR)存在计算量大、内存消耗大的缺点。事实上,频率跳变只在少数几个数据点上发生,大部分数据不包含跳变信息。基于此,提出一种基于正交匹配追踪(Orthogonal Matching Pursuit,OMP)和SLR相结合的跳频信号参数估计方法。该方法将接收到的样本数据均匀分段,对每段数据用OMP算法预处理,检测出发生频率跳变的数据段以及估计出没有发生跳变的数据段的频率;对这些发生跳变的数据段分别用SLR算法估计得到各段的跳时和频率;拼接可以得到整个样本的跳时、跳频图案等。仿真结果表明,该方法在在保持SLR精确估计性能的同时,能有效减少计算量。
文摘生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为校正集,25%的样本作为验证集。采集牛肉新鲜切口处400~1170nm波长范围内的漫反射光谱,用国标方法测定牛肉含水率。经过多元散射校正(multiplicative scatter correction,MSC)、变量标准化(standard normalized variate,SNV)和直接正交信号校正(direct orthogonal signal correction,DOSC)等方法预处理,在400~1170nm范围内分别建立多元线性回归(multiple linear regression,MLR)模型、主成分回归(principal component Regression,PCR)模型和偏最小二乘回归(partial least squares regression,PLSR)模型。结果表明使用MSC预处理方法建立的模型预测效果最佳,其中用PLSR建模结果最好,校正集的相关系数和校正标准差分别是0.92和0.0069,验证集的相关系数和验证标准差分别是0.92和0.0047,外部验证的相关系数和验证标准差分别是0.85和0.0054。结果表明,可见/近红外光谱结合MSC预处理方法建立的PLSR模型,可以对牛肉含水率进行准确的快速无损评价,为生鲜牛肉含水率快速无损检测技术的应用提供理论参考。
文摘【目的】快速、准确地监测土壤有机质对于精准农业的发展具有重要意义。可见光-近红外(visible and near-infrared,Vis-NIR)光谱技术在土壤属性估算、数字化土壤制图等方面应用较为广泛,然而,在田间进行光谱测量,易受土壤含水量(soil moisture,SM)、温度、土壤表面状况等因素的影响,导致光谱信息中包含大量干扰信息,其中,SM变化是影响光谱观测结果最为显著的因素之一。此研究的目的是探讨OSC算法消除其影响,提升Vis-NIR光谱定量估算土壤有机质(soil organic matter,SOM)的精度。【方法】以江汉平原公安县和潜江市为研究区域,采集217份耕层(0—20 cm)土壤样本,进行风干、研磨、过筛等处理,采用重铬酸钾-外加热法测定SOM;将总体样本划分为3个互不重叠的样本集:建模集S^0(122个样本)、训练集S^1(60个样本)、验证集S^2(35个样本);设计SM梯度试验(梯度间隔为4%),在实验室内获取S^1和S^2样本集的9个梯度SM(0%—32%)的土壤光谱数据;分析SM对土壤Vis-NIR光谱反射率的影响,采用外部参数正交化算法(external parameter orthogonalization,EPO)、正交信号校正算法(orthogonal signal correction,OSC)消除SM对土壤光谱的干扰;利用主成分分析(principal component analysis,PCA)的前两个主成分得分和光谱相关系数两种方法检验消除SM干扰前、后的效果;基于偏最小二乘回归(partial least squares regression,PLSR)方法建立EPO和OSC处理前、后的SOM估算模型,利用决定系数(coefficient of determination,R^2)、均方根误差(root mean square error,RMSE)和RPD(the ratio of prediction to deviation)3个指标比较PLSR、EPO-PLSR、OSC-PLSR模型的性能。【结果】土壤Vis-NIR光谱受SM的影响十分明显,随着SM的增加,土壤光谱反射率呈非线性降低趋势。OSC处理前的湿土光谱数据主成分得分散点相对分散,与干土光谱数据主成分得分空间的位置不重叠,不同SM梯度之间的光谱相关系数变化较大;OSC处理后的湿土光谱数据主成分得分空间的位置基本与干土光谱数据相重合,各样本光谱数据之间相似性很高,不同SM梯度之间的光谱相关系数变化较小。9个SM梯度的EPO-PLSR模型的验证平均R^2_(pre)、RPD分别为0.69、1.7。9个SM梯度的OSC-PLSR模型的验证平均R^2_(pre)、RPD分别为0.72、1.89,校正后的OSC-PLSR模型受SM的较小,有效提升SOM估算模型的精度和鲁棒性。【结论】OSC能够消除SM变化对土壤Vis-NIR光谱的影响,可为将来田间原位实时监测SOM信息提供一定的理论支撑。