为了提高极化敏感阵列中压缩感知类波达方向(Direction Of Arrival,DOA)估计算法的精度,避免网格失配问题,本文使用正交偶极子阵列在原子范数最小化(Atomic Norm Minimization,ANM)的理论基础上提出一种无网格波达方向估计算法.首先,将...为了提高极化敏感阵列中压缩感知类波达方向(Direction Of Arrival,DOA)估计算法的精度,避免网格失配问题,本文使用正交偶极子阵列在原子范数最小化(Atomic Norm Minimization,ANM)的理论基础上提出一种无网格波达方向估计算法.首先,将一维正交偶极子天线接收到的多快拍信号分解为两个子阵再求和,然后通过解决半正定规划问题恢复出一个含有入射信源信息的半正定Toeplitz矩阵,继而对该矩阵进行Vandermonde分解,恢复入射信源的DOA信息.同时结合协方差矩阵的向量化结果和最小二乘法计算得到入射信源的极化辅助角和极化相位角信息.通过仿真实验,在不同快拍数和信噪比下,对比子空间类算法和压缩感知类算法,证明了该算法具有较高的测角精度.展开更多
文摘为了提高极化敏感阵列中压缩感知类波达方向(Direction Of Arrival,DOA)估计算法的精度,避免网格失配问题,本文使用正交偶极子阵列在原子范数最小化(Atomic Norm Minimization,ANM)的理论基础上提出一种无网格波达方向估计算法.首先,将一维正交偶极子天线接收到的多快拍信号分解为两个子阵再求和,然后通过解决半正定规划问题恢复出一个含有入射信源信息的半正定Toeplitz矩阵,继而对该矩阵进行Vandermonde分解,恢复入射信源的DOA信息.同时结合协方差矩阵的向量化结果和最小二乘法计算得到入射信源的极化辅助角和极化相位角信息.通过仿真实验,在不同快拍数和信噪比下,对比子空间类算法和压缩感知类算法,证明了该算法具有较高的测角精度.