正交匹配追踪反卷积声源识别算法(orthogonal matching pursuit deconvolution approach for the mapping of acoustic sources, OMP-DAMAS)具有极高的计算效率、空间分辨率和重构精度,被广泛应用声源识别领域。但在实际的工程运用中,...正交匹配追踪反卷积声源识别算法(orthogonal matching pursuit deconvolution approach for the mapping of acoustic sources, OMP-DAMAS)具有极高的计算效率、空间分辨率和重构精度,被广泛应用声源识别领域。但在实际的工程运用中,无法满足提前确定声源数目的条件,可能造成识别结果不准确。因此提出了一种分段取阈值的OMP-DAMAS算法,在声源稀疏度未知的情况下,通过对内积和最小二乘解取阈值将伪声源和旁瓣对应的列序号从原子支撑集中删除,直接精确的识别出真实声源的位置。仿真和试验结果表明了所提算法与传统的延时求和算法相比,可以明显的减小主瓣宽度,提高空间分辨率,同样能达到OMP-DAMAS算法的重构效果,对噪声具有较好的鲁棒性,且具有极高的识别稳定性。展开更多
文摘正交匹配追踪反卷积声源识别算法(orthogonal matching pursuit deconvolution approach for the mapping of acoustic sources, OMP-DAMAS)具有极高的计算效率、空间分辨率和重构精度,被广泛应用声源识别领域。但在实际的工程运用中,无法满足提前确定声源数目的条件,可能造成识别结果不准确。因此提出了一种分段取阈值的OMP-DAMAS算法,在声源稀疏度未知的情况下,通过对内积和最小二乘解取阈值将伪声源和旁瓣对应的列序号从原子支撑集中删除,直接精确的识别出真实声源的位置。仿真和试验结果表明了所提算法与传统的延时求和算法相比,可以明显的减小主瓣宽度,提高空间分辨率,同样能达到OMP-DAMAS算法的重构效果,对噪声具有较好的鲁棒性,且具有极高的识别稳定性。