期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于正交基的多视图迁移谱聚类 被引量:1
1
作者 王丽娟 张霖 +3 位作者 尹明 郝志峰 蔡瑞初 温雯 《计算机工程》 CAS CSCD 北大核心 2022年第10期37-44,54,共9页
挖掘多视图一致性是提升多视图聚类性能的关键,为更好地从多视图数据中学习一致性表示,提出一种新的多视图聚类算法OMTSC。OMTSC算法同时学习每个视图的聚类分配矩阵和特征嵌入,并将聚类分配矩阵分解为共享正交基矩阵和聚类编码矩阵。... 挖掘多视图一致性是提升多视图聚类性能的关键,为更好地从多视图数据中学习一致性表示,提出一种新的多视图聚类算法OMTSC。OMTSC算法同时学习每个视图的聚类分配矩阵和特征嵌入,并将聚类分配矩阵分解为共享正交基矩阵和聚类编码矩阵。正交基矩阵可捕获并储存多视图一致性信息形成潜在聚类中心,经过加权融合的多视图聚类编码矩阵可更好地平衡不同视图的质量差异。引入基于二部图的协同聚类,实现正交基、聚类编码和特征嵌入3个矩阵的知识相互迁移,以提升多视图数据一致性和多样性,并利用特征嵌入的多样性最大化多视图一致性学习最优的潜在聚类中心,从而提高多视图聚类的性能。此外,基于群稀疏约束的特征嵌入可有效消除多视图数据中的噪声,提升算法的鲁棒性。在WikipediaArticles、COIL20和ORL数据集上的实验结果表明,与SC-Best、Co-Reg等先进的多视图聚类算法相比,OMTSC算法在ACC、NMI、ARI 3个评价指标上整体取得最优值,其中在COIL20和ORL数据集中的NMI评价指标均高于0.9。 展开更多
关键词 多视图 正交基聚类 迁移学习 协同则化
下载PDF
一种基于Spark的论文相似性快速检测方法 被引量:2
2
作者 卓可秋 童国平 虞为 《图书情报工作》 CSSCI 北大核心 2015年第11期134-142,共9页
[目的/意义]从大规模已知文本集中检测出与待检测论文的相似文本并计算相似度大小,用于满足在线论文相似性检测秒级响应需求。[方法/过程]采用分治法策略,对已知文本句集进行基于正交基的软聚类预处理,并对软聚类后的每个簇建立倒排索... [目的/意义]从大规模已知文本集中检测出与待检测论文的相似文本并计算相似度大小,用于满足在线论文相似性检测秒级响应需求。[方法/过程]采用分治法策略,对已知文本句集进行基于正交基的软聚类预处理,并对软聚类后的每个簇建立倒排索引。接着在快数据处理平台Spark上执行相似性检测,采用字符结合词组形式计算出待检测论文与已知文本的相似度大小。[结果/结论]通过200万规模的已知文本集实验结果显示,综合4种类型的待检测论文,所提出的倒排索引结合软聚类算法准确率P为100.0%,召回率R为93.6%,调和平均值F为96.7%。调和平均值F比相似性检测算法LCS高10%左右,比Simhash算法高约23%。在检测速度上,对于一篇字数为5 000左右的待检测论文,检测时间约为6.5秒,比Simhash算法快近300倍,比LCS算法快约4 000倍,此外,实验结果还表明基于Spark的分布式并行相似性检测算法具有较好的可扩展性。 展开更多
关键词 论文相似性检测 Spark快数据处理 交基 倒排索引
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部