针对点云平面拟合过程中出现的异常值及误差的问题,提出一种将随机采样一致(random sample consensus,RANSAC)算法与整体最小二乘法(total least squares,TLS)相结合的点云平面拟合方法。利用随机采样一致算法剔除异常值,利用整体最小...针对点云平面拟合过程中出现的异常值及误差的问题,提出一种将随机采样一致(random sample consensus,RANSAC)算法与整体最小二乘法(total least squares,TLS)相结合的点云平面拟合方法。利用随机采样一致算法剔除异常值,利用整体最小二乘法对剩余有效点进行平面拟合,计算模型参数。实验结果表明,该方法与传统的特征值法、最小二乘法相比,能提高参数的估算精度,更适合对含有不同异常值及误差的点云数据进行拟合,是一种稳健的平面拟合方法。展开更多
文摘针对点云平面拟合过程中出现的异常值及误差的问题,提出一种将随机采样一致(random sample consensus,RANSAC)算法与整体最小二乘法(total least squares,TLS)相结合的点云平面拟合方法。利用随机采样一致算法剔除异常值,利用整体最小二乘法对剩余有效点进行平面拟合,计算模型参数。实验结果表明,该方法与传统的特征值法、最小二乘法相比,能提高参数的估算精度,更适合对含有不同异常值及误差的点云数据进行拟合,是一种稳健的平面拟合方法。