A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channe...A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channels. The target application for such a scalable transcoder is to provide successful access to the pre-encoded high quality video MPEG-2 from mobile wireless terminals. In the scalable transcoder, besides outputting the MPEG-4 fine granular scalability (FGS) bitstream, both the size of video frames and the bit rate are reduced. And an array processing algorithm of layer interference suppression is used at the receiver which makes the system structure provide different levels of protection to different layers. Furthermore, by considering the important level of scalable bitstream, the different bitstreams can be given different level protection by the system structure and channel coding. With the proposed system, the concurrent large diversity gain characteristic of STBC and alleviation of the frequency-selective fading effect of OFDM can be achieved. The simulation results show that the proposed schemes integrating scalable transcoding can provide a basic quality of video transmission and outperform the conventional single layer transcoding transmitted under the random and bursty error channel conditions.展开更多
Due to the high complexity of the pairwise decoding algorithm and the poor performance of zero forcing( ZF) /minimum mean square error( MMSE) decoding algorithm, two low-complexity suboptimal decoding algorithms, ...Due to the high complexity of the pairwise decoding algorithm and the poor performance of zero forcing( ZF) /minimum mean square error( MMSE) decoding algorithm, two low-complexity suboptimal decoding algorithms, called pairwisequasi-ZF and pairwise-quasi-MMSE decoders, are proposed. First,two transmit signals are detected by the quasi-ZF or the quasiMMSE algorithm at the receiver. Then, the two detected signals as the decoding results are substituted into the two pairwise decoding algorithm expressions to detect the other two transmit signals. The bit error rate( BER) performance of the proposed algorithms is compared with that of the current known decoding algorithms.Also, the number of calculations of ZF, MMSE, quasi-ZF and quasi-MMSE algorithms is compared with each other. Simulation results showthat the BER performance of the proposed algorithms is substantially improved in comparison to the quasi-ZF and quasiMMSE algorithms. The BER performance of the pairwise-quasiZF( pairwise-quasi-MMSE) decoder is equivalent to the pairwiseZF( pairwise-MMSE) decoder, while the computational complexity is significantly reduced.展开更多
A novel adaptive ordered LDPC (low-density parity-check) coded OFDM (orthogonal frequency-division multiplexing) transmission technique is proposed to exploit different error probabilities of irregular LDPC coded ...A novel adaptive ordered LDPC (low-density parity-check) coded OFDM (orthogonal frequency-division multiplexing) transmission technique is proposed to exploit different error probabilities of irregular LDPC coded bits in OFDM systems. Assuming that the CSI (channel state information) is known at the transmitter, the irregular LDPC coded bits are ordered according to their degrees and then allocated into subcarriers adaptively. Bits with higher degrees are allocated into less attenuated subcarriers and bits with lower degrees are allocated into deep attenuated subcarriers. Quantization on CSI feedback can be applied to minimize the signaling overhead. Performance of this strategy is analyzed by density evolution and numerical simulation. Simulation results show that about a 1 to 1.5 dB gain in terms of SNR ( signal to noise ratio) can be achieved over frequency-selective fading channels compared to conventional LDPC coded OFDM systems without ordering, and the proposed scheme is robust to CSI quantization.展开更多
A new family of two-dimensional optical orthogonal code(2-DOOC), namely, modified quadratic congruence code(MQCC )/optical orthogonal code(OOC) is proposed who employs MQCC and OOC as wavelength hopping and time-sprea...A new family of two-dimensional optical orthogonal code(2-DOOC), namely, modified quadratic congruence code(MQCC )/optical orthogonal code(OOC) is proposed who employs MQCC and OOC as wavelength hopping and time-spreading patterns, respectively. Through analyzing the performance of MQCC/OOC, we can see that the correlation properties of the MQCC/OOC are still ideal. Simultaneously, our analysis shows that the proposed new code families can get more cardinalities than other codes and can improve the bit error rate(BER) of optical code division multiple access(OCDMA) effectively.展开更多
In this paper, based on the characteristics of polar codes, a new decode-and-forward strategy called generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal r...In this paper, based on the characteristics of polar codes, a new decode-and-forward strategy called generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal receiver components(MRNORCs). In such a protocol, with the help of partial information from previous nodes, each relay node tries to recover the received source message and re-encodes part of the decoded message for transmission to satisfy the decoding requirements for the following relay node or the destination node. In order to construct practical polar codes, the nested structures are developed based on this protocol and the information sets corresponding to the partial messages forwarded are also calculated. The proposed scheme is proved to be capable of achieving the theoretical capacity of the degraded MRN-ORCs while still retains the low-complexity feature of polar codes. We perform simulations to testify the practicability of the proposed scheme and compare polar codes by using successive-cancellation list decoder(SCLD) with traditional low-density parity-check(LDPC) codes. The results show that the obtained polar codes provide significant gain.展开更多
Mobile WiMAX(worldwide interoperability for microwave access) air interface adopts orthogonal frequency division multiple access(OFDMA) as multiple access technique for its uplink(UL) and downlink(DL) to improve the m...Mobile WiMAX(worldwide interoperability for microwave access) air interface adopts orthogonal frequency division multiple access(OFDMA) as multiple access technique for its uplink(UL) and downlink(DL) to improve the multipath performance.All OFDMA based networks,like mobile WiMAX,experience the problem of high peak-to-average power ratio(PAPR).The high PAPR increases the complexity of analog-to-digital(A/D) and digital-to-analog(D/A) convertors,and also reduces the efficiency of RF high-power-amplifier(HPA).In this work,a new zadoff-chu matrix transform(ZCMT) precoding based random interleaved orthogonal frequency division multiple access(OFDMA) system was proposed for PAPR reduction in mobile WiMAX system.The system is based on precoding the constellation symbols with the ZCMT precoder before subcarrier mapping.The PAPR of proposed system is analyzed with the root-raised-cosine(RRC) pulse shaping to keep out of band radiation low and meet the transmission spectrum mask requirement.Simulation results show that the proposed system has better PAPR gain than the hadamard transform(WHT) precoded random interleaved OFDMA systems and the conventional random interleaved OFDMA systems.Symbol-error-rate(SER) performance of the system is also better than the conventional random interleaved OFDMA systems and the random interleaved OFDMA systems with WHT.The good improvement in PAPR significantly reduces the cost and the complexity of the transmitter.展开更多
There are parallel channels which are not fully connected in practice, such as Frequency Division Multiplex (FDM or Orthogonal FDM) systems. Conventional space-time codes can be used for such parallel channels but not...There are parallel channels which are not fully connected in practice, such as Frequency Division Multiplex (FDM or Orthogonal FDM) systems. Conventional space-time codes can be used for such parallel channels but not the optimal. Based on the derivation of PEP expression for codes transmitted on parallel block fading channels, criteria of codes design for not fully connected channels are proposed and are compared with Tarokh's criteria for fully connected channel. New codes for such channels are provided by systematical and exhaustive search. Simulation results show that these codes offer better performance on parallel FDM channels than other known codes.展开更多
The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of...The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated.展开更多
In this paper,the Symbol Error Rate(SER)performance for Orthogonal Space-Time Block Coded(OSTBC)Orthogonal Frequency Division Multiplexing(OFDM)systems over Nakagami-m fading channels is analysed.A novel closed-form S...In this paper,the Symbol Error Rate(SER)performance for Orthogonal Space-Time Block Coded(OSTBC)Orthogonal Frequency Division Multiplexing(OFDM)systems over Nakagami-m fading channels is analysed.A novel closed-form SER expression is proposed,which incorporates the Gauss hypergeometric function and Appell hypergeometric function into the conventional Probability Density Function(PDF)approach.The proposed exact closed-form SER expression is a generalised solution since it perfectly captures OSTBCOFDM systems’performances when having different antenna configurations that employ various modulation schemes and which experience various fading conditions.Finally,Monte Carlo simulation results are provided to demonstrate the exact match between the simulation results and the proposed analytical expressions.展开更多
An approach combining optimal antenna subset selection with blind detection scheme for Orthogonal Space-Time Block Coding (OSTBC) is proposed in this paper. The optimal antenna sub- set selection is taken into account...An approach combining optimal antenna subset selection with blind detection scheme for Orthogonal Space-Time Block Coding (OSTBC) is proposed in this paper. The optimal antenna sub- set selection is taken into account at transmitter and/or receiver sides, which chooses the optimal an- tennas to increase the diversity order of OSTBC and improve further its performance. In order to en- hance the robustness of the detection used in the conventional OSTBC scheme, a blind detection scheme based on Independent Component Analysis (ICA) is exploited which can directly extract transmitted signals without channel estimation. Performance analysis shows that the proposed ap- proach can achieve the full diversity and the flexibility of system design by using the antenna selec-tion and the ICA based blind detection schemes.展开更多
A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rat...A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rate data communication. Then, three code recognition algorithms are presented for dual N-ary orthogonal hybrid modulation system and the analytic bit error rate (BER) performance of the system in additive white Gaussian noise (AWGN) and fiat Rayleigh fading channel is derived. Finally, the computer simulation of the system with three code recognition algorithms is performed, which shows that the simplified maximum a posteriori (MAP) algorithm is the best for the system with a compromise between the performance and the complexity.展开更多
A robust interference canceller for Multi-Carrier Code Division Multiple Access(MC-CDMA) using Orthogonal Frequency Division Multiplexing (OFDM) in Rayleigh fading isproposed. This interference canceller is robust in ...A robust interference canceller for Multi-Carrier Code Division Multiple Access(MC-CDMA) using Orthogonal Frequency Division Multiplexing (OFDM) in Rayleigh fading isproposed. This interference canceller is robust in the sense that it cancels Inter-Carriers Inter-ference (ICI) and is suitable for use in dispersive channels. To come up the effects of the signaldispersion, Doppler shifts and delay spreads on the performance of MC-CDMA systems over mo-bile fading channels, this interference canceller exploits the merit of the orthogonal signaling andpilot signals to evaluate the channel parameters. This interface canceller is well suited to work initerative turbo interference cancellation.展开更多
A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM...A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost. This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance, and enhances flexibility and scalability of the system.展开更多
文摘A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channels. The target application for such a scalable transcoder is to provide successful access to the pre-encoded high quality video MPEG-2 from mobile wireless terminals. In the scalable transcoder, besides outputting the MPEG-4 fine granular scalability (FGS) bitstream, both the size of video frames and the bit rate are reduced. And an array processing algorithm of layer interference suppression is used at the receiver which makes the system structure provide different levels of protection to different layers. Furthermore, by considering the important level of scalable bitstream, the different bitstreams can be given different level protection by the system structure and channel coding. With the proposed system, the concurrent large diversity gain characteristic of STBC and alleviation of the frequency-selective fading effect of OFDM can be achieved. The simulation results show that the proposed schemes integrating scalable transcoding can provide a basic quality of video transmission and outperform the conventional single layer transcoding transmitted under the random and bursty error channel conditions.
基金The National Natural Science Foundation of China(No.6157110861201248)+1 种基金the Open Research Fund of National Mobile Communications Research Laboratory of China(No.2011D18)China Postdoctoral Science Foundation(No.2012M511175)
文摘Due to the high complexity of the pairwise decoding algorithm and the poor performance of zero forcing( ZF) /minimum mean square error( MMSE) decoding algorithm, two low-complexity suboptimal decoding algorithms, called pairwisequasi-ZF and pairwise-quasi-MMSE decoders, are proposed. First,two transmit signals are detected by the quasi-ZF or the quasiMMSE algorithm at the receiver. Then, the two detected signals as the decoding results are substituted into the two pairwise decoding algorithm expressions to detect the other two transmit signals. The bit error rate( BER) performance of the proposed algorithms is compared with that of the current known decoding algorithms.Also, the number of calculations of ZF, MMSE, quasi-ZF and quasi-MMSE algorithms is compared with each other. Simulation results showthat the BER performance of the proposed algorithms is substantially improved in comparison to the quasi-ZF and quasiMMSE algorithms. The BER performance of the pairwise-quasiZF( pairwise-quasi-MMSE) decoder is equivalent to the pairwiseZF( pairwise-MMSE) decoder, while the computational complexity is significantly reduced.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2002AA123031)
文摘A novel adaptive ordered LDPC (low-density parity-check) coded OFDM (orthogonal frequency-division multiplexing) transmission technique is proposed to exploit different error probabilities of irregular LDPC coded bits in OFDM systems. Assuming that the CSI (channel state information) is known at the transmitter, the irregular LDPC coded bits are ordered according to their degrees and then allocated into subcarriers adaptively. Bits with higher degrees are allocated into less attenuated subcarriers and bits with lower degrees are allocated into deep attenuated subcarriers. Quantization on CSI feedback can be applied to minimize the signaling overhead. Performance of this strategy is analyzed by density evolution and numerical simulation. Simulation results show that about a 1 to 1.5 dB gain in terms of SNR ( signal to noise ratio) can be achieved over frequency-selective fading channels compared to conventional LDPC coded OFDM systems without ordering, and the proposed scheme is robust to CSI quantization.
文摘A new family of two-dimensional optical orthogonal code(2-DOOC), namely, modified quadratic congruence code(MQCC )/optical orthogonal code(OOC) is proposed who employs MQCC and OOC as wavelength hopping and time-spreading patterns, respectively. Through analyzing the performance of MQCC/OOC, we can see that the correlation properties of the MQCC/OOC are still ideal. Simultaneously, our analysis shows that the proposed new code families can get more cardinalities than other codes and can improve the bit error rate(BER) of optical code division multiple access(OCDMA) effectively.
基金supported by the National Natural Science Foundation of China (No.41574137, 41304117)
文摘In this paper, based on the characteristics of polar codes, a new decode-and-forward strategy called generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal receiver components(MRNORCs). In such a protocol, with the help of partial information from previous nodes, each relay node tries to recover the received source message and re-encodes part of the decoded message for transmission to satisfy the decoding requirements for the following relay node or the destination node. In order to construct practical polar codes, the nested structures are developed based on this protocol and the information sets corresponding to the partial messages forwarded are also calculated. The proposed scheme is proved to be capable of achieving the theoretical capacity of the degraded MRN-ORCs while still retains the low-complexity feature of polar codes. We perform simulations to testify the practicability of the proposed scheme and compare polar codes by using successive-cancellation list decoder(SCLD) with traditional low-density parity-check(LDPC) codes. The results show that the obtained polar codes provide significant gain.
文摘Mobile WiMAX(worldwide interoperability for microwave access) air interface adopts orthogonal frequency division multiple access(OFDMA) as multiple access technique for its uplink(UL) and downlink(DL) to improve the multipath performance.All OFDMA based networks,like mobile WiMAX,experience the problem of high peak-to-average power ratio(PAPR).The high PAPR increases the complexity of analog-to-digital(A/D) and digital-to-analog(D/A) convertors,and also reduces the efficiency of RF high-power-amplifier(HPA).In this work,a new zadoff-chu matrix transform(ZCMT) precoding based random interleaved orthogonal frequency division multiple access(OFDMA) system was proposed for PAPR reduction in mobile WiMAX system.The system is based on precoding the constellation symbols with the ZCMT precoder before subcarrier mapping.The PAPR of proposed system is analyzed with the root-raised-cosine(RRC) pulse shaping to keep out of band radiation low and meet the transmission spectrum mask requirement.Simulation results show that the proposed system has better PAPR gain than the hadamard transform(WHT) precoded random interleaved OFDMA systems and the conventional random interleaved OFDMA systems.Symbol-error-rate(SER) performance of the system is also better than the conventional random interleaved OFDMA systems and the random interleaved OFDMA systems with WHT.The good improvement in PAPR significantly reduces the cost and the complexity of the transmitter.
基金Supported by the National Natural Science Foundation of China(No.60496311).
文摘There are parallel channels which are not fully connected in practice, such as Frequency Division Multiplex (FDM or Orthogonal FDM) systems. Conventional space-time codes can be used for such parallel channels but not the optimal. Based on the derivation of PEP expression for codes transmitted on parallel block fading channels, criteria of codes design for not fully connected channels are proposed and are compared with Tarokh's criteria for fully connected channel. New codes for such channels are provided by systematical and exhaustive search. Simulation results show that these codes offer better performance on parallel FDM channels than other known codes.
基金Supported by the National High Technology ResearchDevelopment Program of China (863 Program)(No.2001AA 123014)
文摘The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated.
基金supported by the Fundamental Research Funds for the Central Universities(Dalian Maritime University)under Grants No.2012QN043,No.2011QN116
文摘In this paper,the Symbol Error Rate(SER)performance for Orthogonal Space-Time Block Coded(OSTBC)Orthogonal Frequency Division Multiplexing(OFDM)systems over Nakagami-m fading channels is analysed.A novel closed-form SER expression is proposed,which incorporates the Gauss hypergeometric function and Appell hypergeometric function into the conventional Probability Density Function(PDF)approach.The proposed exact closed-form SER expression is a generalised solution since it perfectly captures OSTBCOFDM systems’performances when having different antenna configurations that employ various modulation schemes and which experience various fading conditions.Finally,Monte Carlo simulation results are provided to demonstrate the exact match between the simulation results and the proposed analytical expressions.
基金Partially supported by National Natural Science Foun-dation of China (60572105)Open Foundations of the State Key Laboratory of Mobile Communications (A200508)+1 种基金the State Key Lab of Integrated Services Networks (ISN7-02)the Program for New Century Excellent Talents (NCET-05-0582) in University.
文摘An approach combining optimal antenna subset selection with blind detection scheme for Orthogonal Space-Time Block Coding (OSTBC) is proposed in this paper. The optimal antenna sub- set selection is taken into account at transmitter and/or receiver sides, which chooses the optimal an- tennas to increase the diversity order of OSTBC and improve further its performance. In order to en- hance the robustness of the detection used in the conventional OSTBC scheme, a blind detection scheme based on Independent Component Analysis (ICA) is exploited which can directly extract transmitted signals without channel estimation. Performance analysis shows that the proposed ap- proach can achieve the full diversity and the flexibility of system design by using the antenna selec-tion and the ICA based blind detection schemes.
基金the National Basic Research Program of China(No5130601)Jiangsu Provincial Natural Science Foundation(NoBK2006701)
文摘A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rate data communication. Then, three code recognition algorithms are presented for dual N-ary orthogonal hybrid modulation system and the analytic bit error rate (BER) performance of the system in additive white Gaussian noise (AWGN) and fiat Rayleigh fading channel is derived. Finally, the computer simulation of the system with three code recognition algorithms is performed, which shows that the simplified maximum a posteriori (MAP) algorithm is the best for the system with a compromise between the performance and the complexity.
基金the National Natural Science Foundation of China(No.60172048)
文摘A robust interference canceller for Multi-Carrier Code Division Multiple Access(MC-CDMA) using Orthogonal Frequency Division Multiplexing (OFDM) in Rayleigh fading isproposed. This interference canceller is robust in the sense that it cancels Inter-Carriers Inter-ference (ICI) and is suitable for use in dispersive channels. To come up the effects of the signaldispersion, Doppler shifts and delay spreads on the performance of MC-CDMA systems over mo-bile fading channels, this interference canceller exploits the merit of the orthogonal signaling andpilot signals to evaluate the channel parameters. This interface canceller is well suited to work initerative turbo interference cancellation.
文摘A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost. This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance, and enhances flexibility and scalability of the system.