-
题名基于正交稀疏约束非负张量分解的人脸识别算法
被引量:2
- 1
-
-
作者
宋珊
冯岩
徐常青
-
机构
苏州科技大学数学科学学院
-
出处
《运筹学学报》
CSCD
北大核心
2021年第2期55-66,共12页
-
基金
国家自然科学基金(No.11871362)。
-
文摘
非负张量分解作为一种特征提取方法,以不会破坏数据的内部结构特征和可解释性强等优势在图像处理和模式识别领域得到广泛的应用。但是,该方法在提取人脸子特征时会存在以下两个问题:一是分解得到的基图像之间存在不必要的相关性,导致冗余信息较多,极占内存;二是编码不够稀疏导致图像表达方式不够简洁。这些问题都会极大的影响人脸识别的准确率。为了进一步提高人脸识别准确率,提出基于正交稀疏约束非负张量分解的人脸识别算法。首先,在传统的非负张量分解中添加正交稀疏约束,降低基图像之间的相关性并获得稀疏编码。其次,利用原始人脸图像和分解得到的基图像计算人脸的低维特征表示。最后,利用余弦相似度衡量低维特征间的相似性,判断两张人脸图像是否表示同一个人。通过在AR数据库和ORL数据库中进行实验,发现提出的改进算法能取得较好的识别效果。
-
关键词
非负张量分解
正交稀疏约束
人脸识别
-
Keywords
nonnegative tensor factorization
orthogonal and sparse constraints
face recognition
-
分类号
TP391.41
[自动化与计算机技术—计算机应用技术]
-