Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) sys...Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems is extensively investigated. By designing the training sequences to meet certain conditions and exploiting the Hermitian and real symmetric properties of the corresponding matrices, it is found that the roots of the polynomials corresponding to the cost functions are pairwise and that both meger CFO and fractional CFO can be estimated by the direct polynomial rooting approach. By analyzing the polynomials corresponding to the cost functions and their derivatives, it is shown that they have a common polynomial factor and the former can be expressed in a quadratic form of the common polynomial factor. Analytical results further reveal that the derivative polynomial rooting approach is equivalent to the direct one in estimation at the same signal-to-noise ratio(SNR) value and that the latter is superior to the former in complexity. Simulation results agree well with analytical results.展开更多
In order to exploit the capability of the peak-to-average power ratio(PAPR)reduction afforded by the partial transmit sequences (PTS)approach in orthogonal frequency division multiplexing(OFDM)systems, subblock ...In order to exploit the capability of the peak-to-average power ratio(PAPR)reduction afforded by the partial transmit sequences (PTS)approach in orthogonal frequency division multiplexing(OFDM)systems, subblock partition schemes for the PTS approach are studied. The motivation is to establish the relationship between the subblock partition and the capability of PAPR reduction through the periodic autocorrelation functions (ACFs)of partial transmit sequences and the periodic cross-correlation functions(CCFs)of signal candidates.Let Q represent the variation of the square magnitudes of ACFs.It is found that the lower the Q-value is, the better PAPR performance can be achieved, which is introduced as a design criterion for subblock partition.Based on this criterion, four common partition methods are compared and an efficient partition strategy is proposed. It is shown that structured partition schemes with low computational complexity have a large Q-value, leading to a poor PAPR performance.The new strategy can be regarded as a trade-off between PAPR performance and computational complexity.The simulation results show that the strategy can achieve an optimal performance with a relatively low complexity and, moreover,does not increase the amount of side information.展开更多
An efficient scheme of integer frequency offset estimate for orthogonal frequency division multiplexing (OFDM) systems is proposed based on a training symbol with several identicalparts. In this scheme, the received...An efficient scheme of integer frequency offset estimate for orthogonal frequency division multiplexing (OFDM) systems is proposed based on a training symbol with several identicalparts. In this scheme, the received training symbol is first reshaped into several sub-symbols.It shows that the reshaping process in-troduees time diversity multiplexing.After a special fast Fourier transform (FFT) algorithm is applied to the sub-symbol,the integer frequency is estimated by finding the maximum magnitude of the resulting fre-quency domain signal.To improve the estimate performance,diversity combining methods are presented to makefull use of the multiple frequency domain sub-symbols.Compared to the traditional scheme, theproposed one has an improved estimate performance demonstrated by the computation simulation, while maintaining a very low complexity.展开更多
Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high...Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.展开更多
The major drawback in Orthogonal Frequency Division Multiplexing (OFDM) system is due to the high Peak-to-Average Power Ratio (PAPR), so the performance of the system is significantly degraded by the nonlinearity of a...The major drawback in Orthogonal Frequency Division Multiplexing (OFDM) system is due to the high Peak-to-Average Power Ratio (PAPR), so the performance of the system is significantly degraded by the nonlinearity of a High Power Amplifier (HPA) in the transmitter.In order to mitigate distortion, a block coding scheme for reducing PAPR in OFDM systems with large number of subcarriers based on complementary sequences and predistortion is proposed,which is capable of both error correction and PAPR reduction. Computer simulation results show that the proposed scheme significantly improves Bit Error Rate(BER) performance as compared to an uncoded system when an HPA is employed or a coded system without predistortion.展开更多
To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive...To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive interference suppression scheme based on independent component analysis (ICA). Taking into account statistical independence of subcarriers' signals of OFDM, the signal recovery mechanism is investigated to achieve the goal of blind equalization. The received OFDM signals can be considered as the mixed observation signals. The effect of CFO and multipath corresponds to the mixing matrix in the problem of blind source separation (BSS) framework. In this paper, the ICA- based OFDM system model is built, and the proposed ICA-based detector is exploited to extract source signals from the observation of a received mixture based on the assumption of statistical independence between the sources. The blind separation technique can increase spectral efficiency and provide robustness performance against erroneous parameter estimation problem. Theoretical analysis and simulation results show that compared with the conventional pilot-based scheme, the improved performance of OFDM systems is obtained by the proposed ICA-based detection technique.展开更多
This paper proposes a companding scheme, where small signals are enlarged and large signals are reduced, to reduce the Peak-to-Average Power Ratio(PAPR). Computer simulation results show that the proposed technique ha...This paper proposes a companding scheme, where small signals are enlarged and large signals are reduced, to reduce the Peak-to-Average Power Ratio(PAPR). Computer simulation results show that the proposed technique has two advantages at least when compared with the conventional methods such as partial transmit sequence, selective mapping and the previous companding. First, it gets better PAPR performances with a lower complexity. Second, the scheme achieves greater performances gain with hardly any damnification of OFDM signals in some degree.展开更多
The traditional fractional frequency offset(FFO) estimation schemes for orthogonal frequency division multiplexing(OFDM) in non-cooperative communication have the problems of susceptible performance with the frequency...The traditional fractional frequency offset(FFO) estimation schemes for orthogonal frequency division multiplexing(OFDM) in non-cooperative communication have the problems of susceptible performance with the frequency offset values and the number of OFDM symbols,a novel fractional frequency offset blind estimation scheme based on EKF for OFDM systems is conceived.The nonlinear function of the frequency offset is calculated by employing the correlation.And then the frequency offset is estimated by means of the iterative algorithm of EKF.The finally fractional frequency offset is estimated by adopting repeated the above process.Simulation results demonstrate that the proposed scheme is robust to the frequency offset values without any requirements of a prior knowledge.展开更多
Physical-layer network coding(PNC) promises substantial theoretical gain to achieve the maximum system throughput in cooperative relay transmission. However, with the increasing global warming, how to reduce power con...Physical-layer network coding(PNC) promises substantial theoretical gain to achieve the maximum system throughput in cooperative relay transmission. However, with the increasing global warming, how to reduce power consumption while satisfy system throughput requirement is becoming a vital issue. In this paper, we investigate energy-efficiency resource allocation(RA) based on PNC with amplify-and-forward(AF) protocol in orthogonal frequency division multiple(OFDM) bidirectional transmission. To minimize the overall transmit power consumption with required system throughput requirement, we consider joint subcarriers and power allocation and formulate the objective task into a constrained optimization problem where the best relay node is selected to minimize total transmit power. The closed form optimization power allocation solutions are acquired by analytical derivation. Based on derivation, we propose a novel optimal energy-efficient power allocation(OE-PA). Numerical results are given to evaluate the performance of the derived scheme as compared to other schemes and show that our scheme has signifi cant improvement to energy saving.展开更多
The ergodic information rate for Orthogonal Frequency-Division Multiplexing / Orthogonal Frequency-Division Multiple Access with amplify-and-forward (AF) relaying systems in the presence of frequency offsets is eval...The ergodic information rate for Orthogonal Frequency-Division Multiplexing / Orthogonal Frequency-Division Multiple Access with amplify-and-forward (AF) relaying systems in the presence of frequency offsets is evaluated. Unlike previous work, per-subcarrier adaptive power allocation is performed on each relay to optimize the system ergodic information rate. For a given frequency offset and total number of relays M, the AF ergodic information rate is proven to be a monotonically increasing function of α (the ratio of the power allocated to the source node and the total transmit power), implying that the maximum ergodic information rate can be obtained at α=1 (i.e., there is no cooperative relay). Furthermore, the proof of "cooperative relays cannot improve the AF ergodic information rate in a quasi-static wireless channel" is also provided in this letter.展开更多
This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmi...This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmitters and the uplink receiver will destroy orthogonality among different subcarriers, hence resulting in inter-carrier interference and multiuser interference. A two-stage frequency offset estimation algorithm based on subspace processing is proposed. The main advantage of the proposed method is that it can obtain the CFOs of all users simultaneously using only one OFDMA block. Compared with the previously known methods, it not only has a relatively low implementation complexity but is also suitable for random subchannel assignment.展开更多
基金The National Natural Science Foundation of China(No.60702028)the National High Technology Research and Development Program of China(863Program)(No.2007AA01Z268)
文摘Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems is extensively investigated. By designing the training sequences to meet certain conditions and exploiting the Hermitian and real symmetric properties of the corresponding matrices, it is found that the roots of the polynomials corresponding to the cost functions are pairwise and that both meger CFO and fractional CFO can be estimated by the direct polynomial rooting approach. By analyzing the polynomials corresponding to the cost functions and their derivatives, it is shown that they have a common polynomial factor and the former can be expressed in a quadratic form of the common polynomial factor. Analytical results further reveal that the derivative polynomial rooting approach is equivalent to the direct one in estimation at the same signal-to-noise ratio(SNR) value and that the latter is superior to the former in complexity. Simulation results agree well with analytical results.
文摘In order to exploit the capability of the peak-to-average power ratio(PAPR)reduction afforded by the partial transmit sequences (PTS)approach in orthogonal frequency division multiplexing(OFDM)systems, subblock partition schemes for the PTS approach are studied. The motivation is to establish the relationship between the subblock partition and the capability of PAPR reduction through the periodic autocorrelation functions (ACFs)of partial transmit sequences and the periodic cross-correlation functions(CCFs)of signal candidates.Let Q represent the variation of the square magnitudes of ACFs.It is found that the lower the Q-value is, the better PAPR performance can be achieved, which is introduced as a design criterion for subblock partition.Based on this criterion, four common partition methods are compared and an efficient partition strategy is proposed. It is shown that structured partition schemes with low computational complexity have a large Q-value, leading to a poor PAPR performance.The new strategy can be regarded as a trade-off between PAPR performance and computational complexity.The simulation results show that the strategy can achieve an optimal performance with a relatively low complexity and, moreover,does not increase the amount of side information.
文摘An efficient scheme of integer frequency offset estimate for orthogonal frequency division multiplexing (OFDM) systems is proposed based on a training symbol with several identicalparts. In this scheme, the received training symbol is first reshaped into several sub-symbols.It shows that the reshaping process in-troduees time diversity multiplexing.After a special fast Fourier transform (FFT) algorithm is applied to the sub-symbol,the integer frequency is estimated by finding the maximum magnitude of the resulting fre-quency domain signal.To improve the estimate performance,diversity combining methods are presented to makefull use of the multiple frequency domain sub-symbols.Compared to the traditional scheme, theproposed one has an improved estimate performance demonstrated by the computation simulation, while maintaining a very low complexity.
基金supported by the National Natural Science Foundation of China(No.91438114,No.61372111 and No.61601045)
文摘Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.
基金Supported in part by the National 863 program of China(No.2001AA123014)
文摘The major drawback in Orthogonal Frequency Division Multiplexing (OFDM) system is due to the high Peak-to-Average Power Ratio (PAPR), so the performance of the system is significantly degraded by the nonlinearity of a High Power Amplifier (HPA) in the transmitter.In order to mitigate distortion, a block coding scheme for reducing PAPR in OFDM systems with large number of subcarriers based on complementary sequences and predistortion is proposed,which is capable of both error correction and PAPR reduction. Computer simulation results show that the proposed scheme significantly improves Bit Error Rate(BER) performance as compared to an uncoded system when an HPA is employed or a coded system without predistortion.
基金supported by a grant from the national High Technology Research and development Program of China(863 Program)(No.2012AA01A502)National Natural Science Foundation of China(No.61179006)Science and Technology Support Program of Sichuan Province(No.2014GZX0004)
文摘To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive interference suppression scheme based on independent component analysis (ICA). Taking into account statistical independence of subcarriers' signals of OFDM, the signal recovery mechanism is investigated to achieve the goal of blind equalization. The received OFDM signals can be considered as the mixed observation signals. The effect of CFO and multipath corresponds to the mixing matrix in the problem of blind source separation (BSS) framework. In this paper, the ICA- based OFDM system model is built, and the proposed ICA-based detector is exploited to extract source signals from the observation of a received mixture based on the assumption of statistical independence between the sources. The blind separation technique can increase spectral efficiency and provide robustness performance against erroneous parameter estimation problem. Theoretical analysis and simulation results show that compared with the conventional pilot-based scheme, the improved performance of OFDM systems is obtained by the proposed ICA-based detection technique.
文摘This paper proposes a companding scheme, where small signals are enlarged and large signals are reduced, to reduce the Peak-to-Average Power Ratio(PAPR). Computer simulation results show that the proposed technique has two advantages at least when compared with the conventional methods such as partial transmit sequence, selective mapping and the previous companding. First, it gets better PAPR performances with a lower complexity. Second, the scheme achieves greater performances gain with hardly any damnification of OFDM signals in some degree.
基金supported by the National Natural Science Foundation of China under Grant No.61501348 and 61271299China Postdoctoral Science Foundation funded project under Grant No.2014M562372+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China under Grant No.2016JQ6039the 111 Project under Grant No.B08038
文摘The traditional fractional frequency offset(FFO) estimation schemes for orthogonal frequency division multiplexing(OFDM) in non-cooperative communication have the problems of susceptible performance with the frequency offset values and the number of OFDM symbols,a novel fractional frequency offset blind estimation scheme based on EKF for OFDM systems is conceived.The nonlinear function of the frequency offset is calculated by employing the correlation.And then the frequency offset is estimated by means of the iterative algorithm of EKF.The finally fractional frequency offset is estimated by adopting repeated the above process.Simulation results demonstrate that the proposed scheme is robust to the frequency offset values without any requirements of a prior knowledge.
基金supported by the Science Instrument Special Funds of the National Natural Science Foundation of China under Grant No.61027003the National High Technology Research and Development Program of China under Grant No.2012AA01A50604
文摘Physical-layer network coding(PNC) promises substantial theoretical gain to achieve the maximum system throughput in cooperative relay transmission. However, with the increasing global warming, how to reduce power consumption while satisfy system throughput requirement is becoming a vital issue. In this paper, we investigate energy-efficiency resource allocation(RA) based on PNC with amplify-and-forward(AF) protocol in orthogonal frequency division multiple(OFDM) bidirectional transmission. To minimize the overall transmit power consumption with required system throughput requirement, we consider joint subcarriers and power allocation and formulate the objective task into a constrained optimization problem where the best relay node is selected to minimize total transmit power. The closed form optimization power allocation solutions are acquired by analytical derivation. Based on derivation, we propose a novel optimal energy-efficient power allocation(OE-PA). Numerical results are given to evaluate the performance of the derived scheme as compared to other schemes and show that our scheme has signifi cant improvement to energy saving.
基金the 863 project No.2014AA01A701,the National Natural Science Foundation of China,Program for New Century Excellent Talents in University,the open research fund of National Mobile Communications Research Laboratory Southeast University,the Research Foundation of China Mobile,and the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘The ergodic information rate for Orthogonal Frequency-Division Multiplexing / Orthogonal Frequency-Division Multiple Access with amplify-and-forward (AF) relaying systems in the presence of frequency offsets is evaluated. Unlike previous work, per-subcarrier adaptive power allocation is performed on each relay to optimize the system ergodic information rate. For a given frequency offset and total number of relays M, the AF ergodic information rate is proven to be a monotonically increasing function of α (the ratio of the power allocated to the source node and the total transmit power), implying that the maximum ergodic information rate can be obtained at α=1 (i.e., there is no cooperative relay). Furthermore, the proof of "cooperative relays cannot improve the AF ergodic information rate in a quasi-static wireless channel" is also provided in this letter.
基金the Specialized Research Fund for the Doctoral Program of Higher Education, China Ministry of Education (No.20030003039).
文摘This paper investigates Carrier Frequency Offset (CFO) estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmitters and the uplink receiver will destroy orthogonality among different subcarriers, hence resulting in inter-carrier interference and multiuser interference. A two-stage frequency offset estimation algorithm based on subspace processing is proposed. The main advantage of the proposed method is that it can obtain the CFOs of all users simultaneously using only one OFDMA block. Compared with the previously known methods, it not only has a relatively low implementation complexity but is also suitable for random subchannel assignment.