研究了在正例和未标记样本场景下不确定样本的分类问题,提出了一种新的算法NNPU(nearest neighbor algorithm for positive and unlabeled learning)。NNPU具有两种实现方式:NNPUa和NNPUu。在UCI标准数据集上的实验结果表明,充分考虑数...研究了在正例和未标记样本场景下不确定样本的分类问题,提出了一种新的算法NNPU(nearest neighbor algorithm for positive and unlabeled learning)。NNPU具有两种实现方式:NNPUa和NNPUu。在UCI标准数据集上的实验结果表明,充分考虑数据不确定信息的NNPUu算法要比仅仅考虑样本中不确定信息均值的NNPUa算法具有更好的分类能力;同时,NNPU算法在对精确数据进行分类时,比NN-d、OCC以及aPUNB算法性能更优。展开更多
为使用正例与未标注数据训练分类器(positive and unlabeled learning,PU learning),提出基于随机森林的PU学习算法。对POSC4.5算法进行扩展,在其生成决策树的过程中加入随机特征选择;在训练阶段,使用有放回抽样技术对PU数据集抽样,生...为使用正例与未标注数据训练分类器(positive and unlabeled learning,PU learning),提出基于随机森林的PU学习算法。对POSC4.5算法进行扩展,在其生成决策树的过程中加入随机特征选择;在训练阶段,使用有放回抽样技术对PU数据集抽样,生成多个不同的PU训练集,并以其训练扩展后的POSC4.5算法,构造多棵决策树;在分类阶段,采用多数投票策略集成各决策树输出。在UCI数据集上的实验结果表明,该算法的分类性能优于偏置支持向量机算法、POS4.5算法和基于装袋技术的POSC4.5算法。展开更多
不确定数据的PU学习在现实世界的许多应用中,如在传感器网络、市场分析和医学诊断等领域普遍存在,提出了针对不确定数据PU学习的决策树算法。基于POSC45中信息增益的计算方法,引入UDT中处理连续属性的不确定数据时用到的不确定数据区间...不确定数据的PU学习在现实世界的许多应用中,如在传感器网络、市场分析和医学诊断等领域普遍存在,提出了针对不确定数据PU学习的决策树算法。基于POSC45中信息增益的计算方法,引入UDT中处理连续属性的不确定数据时用到的不确定数据区间及概率分布函数的概念,提出了一种能处理连续属性的不确定数据PU学习的决策树算法DTU-PU(Decision Tree for Uncertain data with PU-learning)。在UCI数据集上的实验表明,DTU-PU具有较好的分类准确率和健壮性。展开更多
目前基于PU问题的时间序列分类常采用半监督学习对未标注数据集U中数据进行自动标注并构建分类器,但在这种方法中,边界数据样本类别的自动标注难以保证正确性,从而导致构建分类器的效果不佳。针对以上问题,提出一种采用主动学习对未标...目前基于PU问题的时间序列分类常采用半监督学习对未标注数据集U中数据进行自动标注并构建分类器,但在这种方法中,边界数据样本类别的自动标注难以保证正确性,从而导致构建分类器的效果不佳。针对以上问题,提出一种采用主动学习对未标注数据集U中数据进行人工标注从而构建分类器的方法 OAL(Only Active Learning),基于投票委员会(QBC)对标注数据集构建多个分类器进行投票,以计算未标注数据样本的类别不一致性,并综合考虑数据样本的分布密度,计算数据样本的信息量,作为主动学习的数据选择策略。鉴于人工标注数据量有限,在上述OAL方法的基础上,将主动学习与半监督学习相结合,即在主动学习迭代过程中,将类别一致性高的部分数据样本自动标注,以增加训练数据中标注数据量,保证构建分类器的训练数据量。实验表明了该方法通过部分人工标注,相比半监督学习,能够为PU数据集构建更高准确率的分类器。展开更多
滑坡空间易发性统计模型的构建需要正样本(滑坡点)和负样本(非滑坡点)两类数据,但历史观测数据仅记录了正样本,而负样本的选取容易受到正样本污染,因为没有滑坡记录的地方也可能在过去或未来发生滑坡,从而导致模型的预测精度与稳定性受...滑坡空间易发性统计模型的构建需要正样本(滑坡点)和负样本(非滑坡点)两类数据,但历史观测数据仅记录了正样本,而负样本的选取容易受到正样本污染,因为没有滑坡记录的地方也可能在过去或未来发生滑坡,从而导致模型的预测精度与稳定性受到影响。针对此问题,将前期提出的半监督学习算法PBLC(positive and background learning with constraints)应用于滑坡空间易发性分析,探讨其解决负样本污染问题的有效性。本文以粤东地区为研究区,选择高程、坡度、坡向、剖面曲率、距离道路最短距离、距离断层线最短距离、距水系最短距离、年平均降雨量、归一化植被指数和地理坐标共11个影响因子作为环境变量。结果表明,与传统的人工神经网络模型相比,基于PBLC算法的预测概率取值范围更为合理,预测结果更加稳定,且预测精度随背景样本数量增加而提高;粤东地区的滑坡灾害高易发区集中于北部和西南区域,坡度和高程是影响该地区滑坡易发性的主要因子。结果表明,半监督学习算法PBLC可以有效解决滑坡统计建模过程负样本污染的问题,提高模型预测精度。展开更多
基金The National Natural Science Foundation of China under Grant No.60873196the Fundamental Research Funds for the Central Universities under Grant No.QN2009092~~
文摘研究了在正例和未标记样本场景下不确定样本的分类问题,提出了一种新的算法NNPU(nearest neighbor algorithm for positive and unlabeled learning)。NNPU具有两种实现方式:NNPUa和NNPUu。在UCI标准数据集上的实验结果表明,充分考虑数据不确定信息的NNPUu算法要比仅仅考虑样本中不确定信息均值的NNPUa算法具有更好的分类能力;同时,NNPU算法在对精确数据进行分类时,比NN-d、OCC以及aPUNB算法性能更优。
文摘为使用正例与未标注数据训练分类器(positive and unlabeled learning,PU learning),提出基于随机森林的PU学习算法。对POSC4.5算法进行扩展,在其生成决策树的过程中加入随机特征选择;在训练阶段,使用有放回抽样技术对PU数据集抽样,生成多个不同的PU训练集,并以其训练扩展后的POSC4.5算法,构造多棵决策树;在分类阶段,采用多数投票策略集成各决策树输出。在UCI数据集上的实验结果表明,该算法的分类性能优于偏置支持向量机算法、POS4.5算法和基于装袋技术的POSC4.5算法。
文摘不确定数据的PU学习在现实世界的许多应用中,如在传感器网络、市场分析和医学诊断等领域普遍存在,提出了针对不确定数据PU学习的决策树算法。基于POSC45中信息增益的计算方法,引入UDT中处理连续属性的不确定数据时用到的不确定数据区间及概率分布函数的概念,提出了一种能处理连续属性的不确定数据PU学习的决策树算法DTU-PU(Decision Tree for Uncertain data with PU-learning)。在UCI数据集上的实验表明,DTU-PU具有较好的分类准确率和健壮性。
文摘目前基于PU问题的时间序列分类常采用半监督学习对未标注数据集U中数据进行自动标注并构建分类器,但在这种方法中,边界数据样本类别的自动标注难以保证正确性,从而导致构建分类器的效果不佳。针对以上问题,提出一种采用主动学习对未标注数据集U中数据进行人工标注从而构建分类器的方法 OAL(Only Active Learning),基于投票委员会(QBC)对标注数据集构建多个分类器进行投票,以计算未标注数据样本的类别不一致性,并综合考虑数据样本的分布密度,计算数据样本的信息量,作为主动学习的数据选择策略。鉴于人工标注数据量有限,在上述OAL方法的基础上,将主动学习与半监督学习相结合,即在主动学习迭代过程中,将类别一致性高的部分数据样本自动标注,以增加训练数据中标注数据量,保证构建分类器的训练数据量。实验表明了该方法通过部分人工标注,相比半监督学习,能够为PU数据集构建更高准确率的分类器。
文摘滑坡空间易发性统计模型的构建需要正样本(滑坡点)和负样本(非滑坡点)两类数据,但历史观测数据仅记录了正样本,而负样本的选取容易受到正样本污染,因为没有滑坡记录的地方也可能在过去或未来发生滑坡,从而导致模型的预测精度与稳定性受到影响。针对此问题,将前期提出的半监督学习算法PBLC(positive and background learning with constraints)应用于滑坡空间易发性分析,探讨其解决负样本污染问题的有效性。本文以粤东地区为研究区,选择高程、坡度、坡向、剖面曲率、距离道路最短距离、距离断层线最短距离、距水系最短距离、年平均降雨量、归一化植被指数和地理坐标共11个影响因子作为环境变量。结果表明,与传统的人工神经网络模型相比,基于PBLC算法的预测概率取值范围更为合理,预测结果更加稳定,且预测精度随背景样本数量增加而提高;粤东地区的滑坡灾害高易发区集中于北部和西南区域,坡度和高程是影响该地区滑坡易发性的主要因子。结果表明,半监督学习算法PBLC可以有效解决滑坡统计建模过程负样本污染的问题,提高模型预测精度。