期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的抽油机故障诊断
被引量:
27
1
作者
杜娟
刘志刚
+1 位作者
宋考平
杨二龙
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2020年第5期751-757,共7页
为提高抽油机的故障诊断性能、减少诊断模型的硬件存储,设计了基于轻量注意力卷积神经网络和示功图的故障诊断方法。首先,将示功图的位移−载荷数据转换为图像,诊断模型的基础结构采用深度分离卷积,提出一种可嵌入连续卷积层的正则化注...
为提高抽油机的故障诊断性能、减少诊断模型的硬件存储,设计了基于轻量注意力卷积神经网络和示功图的故障诊断方法。首先,将示功图的位移−载荷数据转换为图像,诊断模型的基础结构采用深度分离卷积,提出一种可嵌入连续卷积层的正则化注意力模块,对每个卷积层的通道进行压缩、注意力计算,并根据注意力建立通道失活机制,输出具有特征抑制或加强的注意力特征图。其次,在模型学习算法上,提出注意力损失函数抑制易分样本对模型训练损失的贡献,使模型训练关注难分样本。最后通过仿真实验验证有效性,结果表明该模型硬件存储仅为5.4 MB,故障诊断精度达95.1%,满足抽油机工况检测的诊断精度要求。
展开更多
关键词
卷积神经网络
故障诊断
损失函数
抽油机
正则化注意力
下载PDF
职称材料
题名
基于卷积神经网络的抽油机故障诊断
被引量:
27
1
作者
杜娟
刘志刚
宋考平
杨二龙
机构
东北石油大学计算机与信息技术学院
东北石油大学石油与天然气工程博士后工作站
中国石油大学非常规油气研究院
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2020年第5期751-757,共7页
基金
国家自然科学基金(61502094,51774090,51104030)
黑龙江省自然科学基金(LH2020F003)。
文摘
为提高抽油机的故障诊断性能、减少诊断模型的硬件存储,设计了基于轻量注意力卷积神经网络和示功图的故障诊断方法。首先,将示功图的位移−载荷数据转换为图像,诊断模型的基础结构采用深度分离卷积,提出一种可嵌入连续卷积层的正则化注意力模块,对每个卷积层的通道进行压缩、注意力计算,并根据注意力建立通道失活机制,输出具有特征抑制或加强的注意力特征图。其次,在模型学习算法上,提出注意力损失函数抑制易分样本对模型训练损失的贡献,使模型训练关注难分样本。最后通过仿真实验验证有效性,结果表明该模型硬件存储仅为5.4 MB,故障诊断精度达95.1%,满足抽油机工况检测的诊断精度要求。
关键词
卷积神经网络
故障诊断
损失函数
抽油机
正则化注意力
Keywords
convolutional neural network
fault diagnosis
loss function
pumping unit
regularization attention
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的抽油机故障诊断
杜娟
刘志刚
宋考平
杨二龙
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2020
27
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部