期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于光流约束自编码器的动作识别 被引量:5
1
作者 李亚玮 金立左 +1 位作者 孙长银 崔桐 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期691-696,共6页
为了改进特征学习在提取目标运动方向及运动幅度等方面的能力,提高动作识别精度,提出一种基于光流约束自编码器的动作特征学习算法.该算法是一种基于单层正则化自编码器的无监督特征学习算法,使用神经网络重构视频像素并将对应的运动光... 为了改进特征学习在提取目标运动方向及运动幅度等方面的能力,提高动作识别精度,提出一种基于光流约束自编码器的动作特征学习算法.该算法是一种基于单层正则化自编码器的无监督特征学习算法,使用神经网络重构视频像素并将对应的运动光流作为正则化项.该神经网络在学习动作外观信息的同时能够编码物体的运动信息,生成联合编码动作特征.在多个标准动作数据集上的实验结果表明,光流约束自编码器能有效提取目标的运动部分,增加动作特征的判别能力,在相同的动作识别框架下该算法超越了经典的单层动作特征学习算法. 展开更多
关键词 动作识别 特征学习 正则化自编码器 光流约束自编码器
下载PDF
基于MRSDAE-KPCA结合Bi-LST的滚动轴承剩余使用寿命预测
2
作者 古莹奎 陈家芳 石昌武 《噪声与振动控制》 CSCD 北大核心 2024年第3期95-100,145,共7页
针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承... 针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承剩余使用寿命预测方法。首先采用无监督的堆栈去噪自编码器网络对原始振动数据进行深层特征提取,并使用核主成分分析法进一步降维,以提高健康因子的指标稳定性;然后在堆栈去噪自编码器中加入流形正则化,最大程度保留编码器隐藏层内部的数据分布结构,提高模型提取数据特征的有效性。最后使用双向长短时记忆网络预测轴承的剩余使用寿命,并采用AdaMax优化算法对网络模型的超参数进行自适应寻优。分析结果表明,提出的滚动轴承剩余使用寿命预测方法具有更高的精度。 展开更多
关键词 故障诊断 滚动轴承 剩余使用寿命预测 健康因子 流形正则堆栈去噪自编码器 双向长短时记忆网络
下载PDF
基于MRSDAE-SOM结合HGRU的滚动轴承RUL预测
3
作者 陈家芳 刘钰凡 吴朗 《现代制造工程》 CSCD 北大核心 2024年第3期148-155,53,共9页
基于传统方法预测轴承剩余使用寿命(Residual Useful Life,RUL),步骤繁多,成本昂贵,且模型不具泛化性。现有的基于深度学习(Deep Learning,DL)的预测方法,由于数据量过大,经常导致模型出现过拟合现象,从而使模型精度不高。为了克服以上... 基于传统方法预测轴承剩余使用寿命(Residual Useful Life,RUL),步骤繁多,成本昂贵,且模型不具泛化性。现有的基于深度学习(Deep Learning,DL)的预测方法,由于数据量过大,经常导致模型出现过拟合现象,从而使模型精度不高。为了克服以上缺点,提出一种基于MRSDAE-SOM结合HGRU的滚动轴承RUL预测方法。首先,使用无监督式网络流形正则化堆栈去噪自编码器(Manifold Regularization Stack Denoising Auto Encoder,MRSDAE)结合自组织映射(Self-Or-ganizing Mapping,SOM)构建轴承健康因子(Health Indicator,HI)。然后,通过分层门控循环单元(Hierarchical Gated Re-current Unit,HGRU)网络建立预测模型,HGRU网络通过加入多尺度层和密集层,使其具有捕获时序特征且集成不同时间尺度注意力信息的能力。最后,通过实验验证表明,相比于其他基于数据驱动的方法,所提方法构建健康因子使用无监督方式,高效快捷且便于应用;预测模型泛化能力好,并有效防止了过拟合现象,实现了更高的预测精度。 展开更多
关键词 深度学习 剩余使用寿命 流形正则堆栈去噪自编码器 分层门控循环单元
下载PDF
面向工业入侵检测的数据增强与特征提取的研究 被引量:1
4
作者 宗学军 金琼 李鹏程 《计算机应用与软件》 北大核心 2023年第6期315-322,共8页
随着工业控制网络(Industrial Control Network,ICN)高速发展,ICN安全已经是全球性重要问题之一,工业入侵检测作为一种ICN安全防护技术成为研究热点。在工业入侵检测中,由于ICN数据存在攻击样本不平衡、特征维度高的问题,提出一种辅助... 随着工业控制网络(Industrial Control Network,ICN)高速发展,ICN安全已经是全球性重要问题之一,工业入侵检测作为一种ICN安全防护技术成为研究热点。在工业入侵检测中,由于ICN数据存在攻击样本不平衡、特征维度高的问题,提出一种辅助生成对抗网络(Auxiliary Classifier Generative Adversarial Networks,ACGAN)与正则化堆栈稀疏自编码器(Batch Normalization Stacked Sparse Auto-Encoder,BN-SSAE)相结合的深度学习方法,运用ACGAN数据增强和BN-SSAE深层次特征提取解决上述问题,再使用多层感知机(MultiLayer Perceptron,MLP)进行分类,得到入侵检测结果。以ACGAN、BN-SSAE和MLP为基础建立工业入侵检测模型,使用密西西比州立大学数据集进行实验,结果表明该模型符合工业入侵检测的要求。利用加拿大网络安全研究所的CICIDS2017数据集进行验证,证明该模型在工业入侵检测中具有可行性和有效性。 展开更多
关键词 工业控制网络 辅助生成对抗网络 数据增强 正则堆栈稀疏自编码器 特征提取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部