期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
四元数Hardy空间中的slice正则Jackson定理 被引量:1
1
作者 陈英伟 王志军 《河北大学学报(自然科学版)》 CAS 北大核心 2019年第3期230-234,共5页
对于非交换领域四元数上2种类型的Hardy空间,构造了新的de la Vallée Poussin卷积算子,进而得到了高阶光滑模的slice正则Jackson逼近定理.
关键词 四元数Hardy空间 JACKSON定理 de la Vallée Poussin算子 正则多项式
下载PDF
Rm的置换多项式与COSTAS矩阵 被引量:1
2
作者 叶正华 《湘潭大学自然科学学报》 CAS CSCD 1996年第2期113-115,共3页
本文给出了多项式hk(X)=1十x十x2+…+xk置换剩余类环Rm(Z/(m))的充分必要条件;证明了Rm的纯奇次置换多项式f(x)不能生成m×m(m≥4)的Costas矩阵.并深人讨论了迪克逊多项式gk(x,a... 本文给出了多项式hk(X)=1十x十x2+…+xk置换剩余类环Rm(Z/(m))的充分必要条件;证明了Rm的纯奇次置换多项式f(x)不能生成m×m(m≥4)的Costas矩阵.并深人讨论了迪克逊多项式gk(x,a)和hk(x)与Costas矩阵的关系. 展开更多
关键词 剩余类环 正则多项式 置换多项式 Costas矩阵
下载PDF
自主水下航行器多终点航路规划的距离正则化混合水平集算法研究 被引量:2
3
作者 盛亮 邱志明 +1 位作者 于邵祯 焦俊杰 《兵工学报》 EI CAS CSCD 北大核心 2020年第4期750-762,共13页
为进一步提升水平集算法求解自主水下航行器(AUV)时间最优航路的计算效率,结合局部化思想和多项式距离正则化方程,提出一种用于AUV多终点航路规划的混合水平集算法。通过引入简单多项式距离正则化项,融合海流模型,推导新的水平集演化方... 为进一步提升水平集算法求解自主水下航行器(AUV)时间最优航路的计算效率,结合局部化思想和多项式距离正则化方程,提出一种用于AUV多终点航路规划的混合水平集算法。通过引入简单多项式距离正则化项,融合海流模型,推导新的水平集演化方程,并给出数值实现方法。所提算法无需重复初始化窄带且一次演化就能获得至多终点的所有最优航路集,解决了AUV多终点航路规划时计算效率不高、规划时间过长的问题。仿真结果表明,相较于蚁群算法和量子粒子群算法,在AUV的多终点航路规划中,混合水平集算法计算效率是蚁群算法的6.4倍,是量子粒子群算法的1.6倍,且鲁棒性更佳。 展开更多
关键词 自主水下航行器 多项式距离正则 混合水平集 多终点 航路规划
下载PDF
高阶等差数列前n项和的一个求和公式 被引量:1
4
作者 张勇 《贺州学院学报》 1995年第3期43-48,共6页
我们知道,等差数列就是:从第二项开始,每一项与前一项的差都相等的数列。然而,这样的数列只是数列中极少的一类,更多的数列其每一项与前一项的差不一定都相等,但是由这些差组成的新数列,有可能是等差数列,若这个新的数列是一个等差数列... 我们知道,等差数列就是:从第二项开始,每一项与前一项的差都相等的数列。然而,这样的数列只是数列中极少的一类,更多的数列其每一项与前一项的差不一定都相等,但是由这些差组成的新数列,有可能是等差数列,若这个新的数列是一个等差数列,那么称原数列为二阶等差数列。一般地,我们有: 定义1:设r是一个正整数,若数列{a_n}从第二项开始,各项与其前项之差构成一个等差数列,则称数列{a_n}为二阶等差数列。 展开更多
关键词 高阶等差数列 前N项和 r阶等差数列 二阶等差数列 正则多项式 多项式序列 多项式算子 n次多项式 数学归纳法 梧州师专
下载PDF
Regularity of (0,2)-interpolation on the Zeros of the Lascenov Polynomials
5
作者 张秀英 薛明志 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第2期80-86,共7页
In is paper, a necessary and sufficient condition of regularity of (0,2)_interpolation on the zeros of the Lascenov Polynomials R (α,β) n(x)(α,β>-1) in a manageable form is estabished. Meanwhile, the exp... In is paper, a necessary and sufficient condition of regularity of (0,2)_interpolation on the zeros of the Lascenov Polynomials R (α,β) n(x)(α,β>-1) in a manageable form is estabished. Meanwhile, the explicit representation of the fundamental polynomials, when they exist, is given. 展开更多
关键词 Birkhoff interpolation REGULARITY Lascenov polynomial fundamental polynomials
下载PDF
On Total Domination Polynomials of Certain Graphs
6
作者 S. Sanal H. E. Vatsalya 《Journal of Mathematics and System Science》 2016年第3期123-127,共5页
We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of... We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of G of size i, and yt(G) is the total domination number of G. In [7] We have obtained some properties of Dt(G, x) and its coefficients. Also, we have calculated the total domination polynomials of complete graph, complete bipartite graph, join of two graphs and a graph consisting of disjoint components. In this paper, we presented for any two isomorphic graphs the total domination polynomials are same, but the converse is not true. Also, we proved that for any n vertex transitive graph of order n and for any v ∈ V(G), dt(G, i) = 7 dt(V)(G, i), 1 〈 i 〈 n. And, for any k-regular graph of order n, dr(G, i) = (7), i 〉 n-k and d,(G, n-k) = (kn) - n. We have calculated the total domination polynomial of Petersen graph D,(P, x) = 10X4 + 72x5 + 140x6 + 110x7 + 45x8 + [ 0x9 + x10. Also, for any two vertices u and v of a k-regular graph Hwith N(u) ≠ N(v) and if Dr(G, x) = Dt( H, x ), then G is also a k-regular graph. 展开更多
关键词 total dominating set total domination number total domination polynomial
下载PDF
LOCAL WELL-POSEDNESS AND ILL-POSEDNESS ON THE EQUATION OF TYPE □u= u^k(u)~α 被引量:1
7
作者 FANGDAOYUAN WANGCHENGBO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第3期361-378,共18页
This paper undertakes a systematic treatment of the low regularity local well-posedness and ill-posedness theory in H3 and Hs for semilinear wave equations with polynomial nonlinearity in u and (?)u. This ill-posed re... This paper undertakes a systematic treatment of the low regularity local well-posedness and ill-posedness theory in H3 and Hs for semilinear wave equations with polynomial nonlinearity in u and (?)u. This ill-posed result concerns the focusing type equations with nonlinearity on u and (?)tu. 展开更多
关键词 Semilinear wave equation Low regularity Local well-posedness ILL-POSEDNESS
原文传递
Twice Q-polynomial distance-regular graphs of diameter 4
8
作者 MA JianMin KOOLEN Jack H. 《Science China Mathematics》 SCIE CSCD 2015年第12期2683-2690,共8页
It is known that a distance-regular graph with valency k at least three admits at most two Qpolynomial structures. We show that all distance-regular graphs with diameter four and valency at least three admitting two Q... It is known that a distance-regular graph with valency k at least three admits at most two Qpolynomial structures. We show that all distance-regular graphs with diameter four and valency at least three admitting two Q-polynomial structures are either dual bipartite or almost dual bipartite. By the work of Dickie(1995) this implies that any distance-regular graph with diameter d at least four and valency at least three admitting two Q-polynomial structures is, provided it is not a Hadamard graph, either the cube H(d, 2)with d even, the half cube 1/2H(2d + 1, 2), the folded cube?H(2d + 1, 2), or the dual polar graph on [2A2d-1(q)]with q 2 a prime power. 展开更多
关键词 distance-regular graph P-or Q-polynomial structure TIGHT
原文传递
Hypercube and Tetrahedron Algebra
9
作者 Bo HOU Suogang GAO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第2期293-306,共14页
Let D be an integer at least 3 and let H(D, 2) denote the hypercube. It is known that H(D, 2) is a Q-polynomial distance-regular graph with diameter D, and its eigenvalue sequence and its dual eigenvalue sequence are ... Let D be an integer at least 3 and let H(D, 2) denote the hypercube. It is known that H(D, 2) is a Q-polynomial distance-regular graph with diameter D, and its eigenvalue sequence and its dual eigenvalue sequence are all {D-2i}D i=0. Suppose that denotes the tetrahedron algebra. In this paper, the authors display an action of ■ on the standard module V of H(D, 2). To describe this action, the authors define six matrices in Mat X(C), called A, A*, B, B*, K, K*.Moreover, for each matrix above, the authors compute the transpose and then compute the transpose of each generator of ■ on V. 展开更多
关键词 Tetrahedron algebra HYPERCUBE Distance-regular graph Onsager algebra
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部