We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations b...We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies.展开更多
Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced...Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.展开更多
The nonrelativistic dipole-length, -velocity and -acceleration absorptionoscillator strengths for the 1s~22s-1s~22p transitions of the lithium isoelectronic sequence from Z= 11 to 20 are calculated by using the energi...The nonrelativistic dipole-length, -velocity and -acceleration absorptionoscillator strengths for the 1s~22s-1s~22p transitions of the lithium isoelectronic sequence from Z= 11 to 20 are calculated by using the energies and the multiconfiguration interaction wavefunctions obtained from a full core plus correlation (FCPC) method. In most cases, the agreementbetween the oscillator strengths values from the length and velocity formula is up to four or fivedigit. Our results are aiso in good agreement with previous theoretical data available in theliterature.展开更多
Free energy calculations may provide vital information for studying various chemical and biological processes.Quantum mechanical methods are required to accurately describe interaction energies,but their computations ...Free energy calculations may provide vital information for studying various chemical and biological processes.Quantum mechanical methods are required to accurately describe interaction energies,but their computations are often too demanding for conformational sampling.As a remedy,level correction schemes that allow calculating high level free energies based on conformations from lower level simulations have been developed.Here,we present a variation of a Monte Carlo(MC)resampling approach in relation to the weighted histogram analysis method(WHAM).We show that our scheme can generate free energy surfaces that can practically converge to the exact one with sufficient sampling,and that it treats cases with insufficient sampling in a more stable manner than the conventional WHAM-based level correction scheme.It can also provide a guide for checking the uncertainty of the levelcorrected surface and a well-defined criterion for deciding the extent of smoothing on the free energy surface for its visual improvement.We demonstrate these aspects by obtaining the free energy maps associated with the alanine dipeptide and proton transfer network of the KillerRed protein in explicit water,and exemplify that the MC resampled WHAM scheme can be a practical tool for producing free energy surfaces of realistic systems.展开更多
Due to the ubiquitous open air links and complex electromagnetic environment in the satellite communications,how to ensure the security and reliability of the information through the satellite communications is an urg...Due to the ubiquitous open air links and complex electromagnetic environment in the satellite communications,how to ensure the security and reliability of the information through the satellite communications is an urgent problem.This paper combines the AES(Advanced Encryption Standard) with LDPC(Low Density Parity Check Code) to design a secure and reliable error correction method — SEEC(Satellite Encryption and Error Correction).This method selects the LDPC codes,which is suitable for satellite communications,and uses the AES round key to control the encoding process,at the same time,proposes a new algorithm of round key generation.Based on a fairly good property in error correction in satellite communications,the method improves the security of the system,achieves a shorter key size,and then makes the key management easier.Eventually,the method shows a great error correction capability and encryption effect by the MATLAB simulation.展开更多
In recent years, with the development of quantum cryptography, quantum signature has also made great achievement. However,the effectiveness of all the quantum signature schemes reported in the literature can only be v...In recent years, with the development of quantum cryptography, quantum signature has also made great achievement. However,the effectiveness of all the quantum signature schemes reported in the literature can only be verified by a designated person.Therefore, its wide applications are limited. For solving this problem, a new quantum proxy signature scheme using EPR quantumentanglement state and unitary transformation to generate proxy signature is presented. Proxy signer announces his public key whenhe generates the final signature. According to the property of unitary transformation and quantum one-way function, everyone canverify whether the signature is effective or not by the public key. So the quantum proxy signature scheme in our paper can be publicverified. The quantum key distribution and one-time pad encryption algorithm guarantee the unconditional security of this scheme.Analysis results show that this new scheme satisfies strong non-counterfeit and strong non-disavowal.展开更多
基金supported by National major special equipment development(No.2011YQ120045)The National Natural Science Fund(No.41074050 and 41304023)
文摘We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies.
基金supported by the Natural Science Foundation of China (Nos. 11971230, 12071215)the Fundamental Research Funds for the Central Universities(No. NS2018047)the 2019 Graduate Innovation Base(Laboratory)Open Fund of Jiangsu Province(No. Kfjj20190804)
文摘Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10347114,10174029the China Postdoctoral Science Foundation
文摘The nonrelativistic dipole-length, -velocity and -acceleration absorptionoscillator strengths for the 1s~22s-1s~22p transitions of the lithium isoelectronic sequence from Z= 11 to 20 are calculated by using the energies and the multiconfiguration interaction wavefunctions obtained from a full core plus correlation (FCPC) method. In most cases, the agreementbetween the oscillator strengths values from the length and velocity formula is up to four or fivedigit. Our results are aiso in good agreement with previous theoretical data available in theliterature.
基金supported by the Mid-career Researcher Program(No.2017R1A2B3004946)through National Research Foundationfunded by Ministry of Science and ICT of Korea.
文摘Free energy calculations may provide vital information for studying various chemical and biological processes.Quantum mechanical methods are required to accurately describe interaction energies,but their computations are often too demanding for conformational sampling.As a remedy,level correction schemes that allow calculating high level free energies based on conformations from lower level simulations have been developed.Here,we present a variation of a Monte Carlo(MC)resampling approach in relation to the weighted histogram analysis method(WHAM).We show that our scheme can generate free energy surfaces that can practically converge to the exact one with sufficient sampling,and that it treats cases with insufficient sampling in a more stable manner than the conventional WHAM-based level correction scheme.It can also provide a guide for checking the uncertainty of the levelcorrected surface and a well-defined criterion for deciding the extent of smoothing on the free energy surface for its visual improvement.We demonstrate these aspects by obtaining the free energy maps associated with the alanine dipeptide and proton transfer network of the KillerRed protein in explicit water,and exemplify that the MC resampled WHAM scheme can be a practical tool for producing free energy surfaces of realistic systems.
基金supported by the National 863 Project of China under Grant No.2012AA01A509,No.2012AA120800
文摘Due to the ubiquitous open air links and complex electromagnetic environment in the satellite communications,how to ensure the security and reliability of the information through the satellite communications is an urgent problem.This paper combines the AES(Advanced Encryption Standard) with LDPC(Low Density Parity Check Code) to design a secure and reliable error correction method — SEEC(Satellite Encryption and Error Correction).This method selects the LDPC codes,which is suitable for satellite communications,and uses the AES round key to control the encoding process,at the same time,proposes a new algorithm of round key generation.Based on a fairly good property in error correction in satellite communications,the method improves the security of the system,achieves a shorter key size,and then makes the key management easier.Eventually,the method shows a great error correction capability and encryption effect by the MATLAB simulation.
基金supported by the National Science and Technology Key Project (Grant No. 2010ZX03003-003-01)the National Basic Research Program of China (Grant No. 2007CB311203)
文摘In recent years, with the development of quantum cryptography, quantum signature has also made great achievement. However,the effectiveness of all the quantum signature schemes reported in the literature can only be verified by a designated person.Therefore, its wide applications are limited. For solving this problem, a new quantum proxy signature scheme using EPR quantumentanglement state and unitary transformation to generate proxy signature is presented. Proxy signer announces his public key whenhe generates the final signature. According to the property of unitary transformation and quantum one-way function, everyone canverify whether the signature is effective or not by the public key. So the quantum proxy signature scheme in our paper can be publicverified. The quantum key distribution and one-time pad encryption algorithm guarantee the unconditional security of this scheme.Analysis results show that this new scheme satisfies strong non-counterfeit and strong non-disavowal.