Compressed Sensing (CS) offers a method to solve the channel estimation problems for an underwater acoustic system, based on the existence of a sparse representation of the treated signal and an overcomplete diction...Compressed Sensing (CS) offers a method to solve the channel estimation problems for an underwater acoustic system, based on the existence of a sparse representation of the treated signal and an overcomplete dictionary with a set of non-orthogonal bases. In this paper, we proposed a new approach to optimize dictionaries by decreasing the average measure of the mutual coherence of the effective dictionary. A fixed link between the average mutual coherence and the CS perforrmnce is indicated by designing three factors: operating bandwidth, the number of pilot subcarriers, and coherence bandwidth. Both the Orthogonal Matching Pursuit (OMP) and the Basis Pursuit De-Noising (BPDN) are compared to the Dantzig Selector (DS) for different Signal Noise Ratio (SNR) and shown to benefit from the newly designed dictionary. Nurnerical sinmlations and experimental data of an OFDM receiver are used to evaluate the proposed method in comparison with the conventional LeastSquare (LS) estirmtor. The results show that the dictionary with a better condition considerably improves the perforrmnce of the channel estimation.展开更多
Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on...Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on pressure drop between nozzle inlet and outlet has been experimentally studied for different gas flow rates and bath depths. Nozzles with circular, gear-like and four-leaf cross-sectional shape have been studied. The results indicate that, besides the hydraulic diameter of the outlet, the orifice area and the perimeter of the nozzle tip also play significant roles. For the same superficial gas velocity, the average pressure drop from the four-leaf-shaped geometry is the least. The influence of bath depth was found negligible. A correlation for the modified Euler number considering the pressure drop is proposed depending on nozzle geometric parameter and on the modified Froude number with the hydraulic diameter of the nozzle do as characteristic length.展开更多
In an optical high--pressure autoclave with saphire windows and magnetic stirring, phase equilibria data in mixtures of water-n--butane and water-iso--butane were measured in a temperature range from 500K to 600K and ...In an optical high--pressure autoclave with saphire windows and magnetic stirring, phase equilibria data in mixtures of water-n--butane and water-iso--butane were measured in a temperature range from 500K to 600K and at a pressure from 10MPa to 300MPa. The critical curves of these systems start at the critical point of pure water and tend to higher pressures and lower temperatures. These curves pass a temperature minima 624K and 625K respectively and then tend to a high temperature and pressure. Excess volumes on the phase equilibria surface were given. The results are discussed in view of the phase equilibria of other water--n--alkane systems.展开更多
Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformat...Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformation was modified to create an attenuation-type curve model on accumulated pore water pressure in saturated normal consolidation clay. In this model, dynamic strength was introduced and a new parameter called equivalent dynamic stress level was added. Besides, based on comparative analysis on variations between failure-type and attenuatiun-type curves, a failure-type curve model was created on accumulated pore water pressure in saturated normal consolidation clay. Two models can take cycle number, coupling of static and dynamic deviator stress, and consolidation way into consideration. The models are verified by test results. The correlation coefficients are more than 0.98 for optimization of test results based on the two models, and there is good agreement between the optimized and test curves, which shows that the two models are suitable to predict variations of accumulated pore water pressure under different loading cases and consolidation ways. In order to improve prediction accuracy, it is suggested that loading cases and consolidation ways should be consistent with in-situ conditions when dynamic triaxial tests are used to determine the constants in the models.展开更多
An analytical solution was presented to the unsaturated soil with a finite thickness under confinement in the lateral direction and sinusoidal cyclic loading in the vertical direction based on Fredlund's one-dimen...An analytical solution was presented to the unsaturated soil with a finite thickness under confinement in the lateral direction and sinusoidal cyclic loading in the vertical direction based on Fredlund's one-dimensional consolidation equation for unsaturated soil. The transfer relationship between the state vectors at the top surface and any depth was gained by applying the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. The excess pore-air and pore-water pressures and settlement in the Laplace-transformed domain were obtained by using the Laplace transform with the initial and boundary conditions. The analytical solutions of the excess pore-air and pore-water pressures at any depth and settlement were obtained in the time domain by performing the inverse Laplace transforms. A typical example illustrates the consolidation characteristics of unsaturated soil under sinusoidal loading from analytical results. Finally, comparisons between the analytical solutions and results of the numerical method indicate that the analytical solution is correct.展开更多
In this paper, a two-dimensional photonic crystal (2DPC) based pressure sensor is proposed and designed, and the sensing characteristics such as the sensitivity and dynamic range are analyzed over the range of press...In this paper, a two-dimensional photonic crystal (2DPC) based pressure sensor is proposed and designed, and the sensing characteristics such as the sensitivity and dynamic range are analyzed over the range of pressure from 0 GPa to 7 GPa. The sensor is based on 2DPC with the square array of silicon rods surrounded by air. The sensor consists of two photonic crystal quasi waveguides and L3 defect. The L3 defect is placed in between two waveguides and is formed by modifying the radius of three Si rods. It is noticed that through simulation, the resonant wavelength of the sensor is shifted linearly towards the higher wavelength region while increasing the applied pressure level. The achieved sensitivity and dynamic range of the sensor is 2 nm/GPa and 7 Gpa, respectively.展开更多
基金Acknowledgements This work was supported by the National Science Foundation of China under Grant No. 60976065. The authors would like to thank the anonymous reviewers for comments that helped improve the paper.
文摘Compressed Sensing (CS) offers a method to solve the channel estimation problems for an underwater acoustic system, based on the existence of a sparse representation of the treated signal and an overcomplete dictionary with a set of non-orthogonal bases. In this paper, we proposed a new approach to optimize dictionaries by decreasing the average measure of the mutual coherence of the effective dictionary. A fixed link between the average mutual coherence and the CS perforrmnce is indicated by designing three factors: operating bandwidth, the number of pilot subcarriers, and coherence bandwidth. Both the Orthogonal Matching Pursuit (OMP) and the Basis Pursuit De-Noising (BPDN) are compared to the Dantzig Selector (DS) for different Signal Noise Ratio (SNR) and shown to benefit from the newly designed dictionary. Nurnerical sinmlations and experimental data of an OFDM receiver are used to evaluate the proposed method in comparison with the conventional LeastSquare (LS) estirmtor. The results show that the dictionary with a better condition considerably improves the perforrmnce of the channel estimation.
基金Project(51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key R&D Plan of Hunan Province of China+1 种基金Project(2015zzts044) supported by Fundamental Research Funds for the Central Universities,ChinaProject(201606370092) supported by the China Scholarship Council
文摘Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on pressure drop between nozzle inlet and outlet has been experimentally studied for different gas flow rates and bath depths. Nozzles with circular, gear-like and four-leaf cross-sectional shape have been studied. The results indicate that, besides the hydraulic diameter of the outlet, the orifice area and the perimeter of the nozzle tip also play significant roles. For the same superficial gas velocity, the average pressure drop from the four-leaf-shaped geometry is the least. The influence of bath depth was found negligible. A correlation for the modified Euler number considering the pressure drop is proposed depending on nozzle geometric parameter and on the modified Froude number with the hydraulic diameter of the nozzle do as characteristic length.
文摘In an optical high--pressure autoclave with saphire windows and magnetic stirring, phase equilibria data in mixtures of water-n--butane and water-iso--butane were measured in a temperature range from 500K to 600K and at a pressure from 10MPa to 300MPa. The critical curves of these systems start at the critical point of pure water and tend to higher pressures and lower temperatures. These curves pass a temperature minima 624K and 625K respectively and then tend to a high temperature and pressure. Excess volumes on the phase equilibria surface were given. The results are discussed in view of the phase equilibria of other water--n--alkane systems.
基金Project(2009AA11Z101) supported by National High Technology Research and Development Program of ChinaProject supported by Postdoctoral Science Foundation of Central South University,China+1 种基金Project(2012QNZT045) supported by Fundamental Research Funds for Central Universities of ChinaProject(2011CB710601) supported by the National Basic Research Program of China
文摘Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformation was modified to create an attenuation-type curve model on accumulated pore water pressure in saturated normal consolidation clay. In this model, dynamic strength was introduced and a new parameter called equivalent dynamic stress level was added. Besides, based on comparative analysis on variations between failure-type and attenuatiun-type curves, a failure-type curve model was created on accumulated pore water pressure in saturated normal consolidation clay. Two models can take cycle number, coupling of static and dynamic deviator stress, and consolidation way into consideration. The models are verified by test results. The correlation coefficients are more than 0.98 for optimization of test results based on the two models, and there is good agreement between the optimized and test curves, which shows that the two models are suitable to predict variations of accumulated pore water pressure under different loading cases and consolidation ways. In order to improve prediction accuracy, it is suggested that loading cases and consolidation ways should be consistent with in-situ conditions when dynamic triaxial tests are used to determine the constants in the models.
基金Project(2010G016-B)supported by Science and Technology Research and Development of China
文摘An analytical solution was presented to the unsaturated soil with a finite thickness under confinement in the lateral direction and sinusoidal cyclic loading in the vertical direction based on Fredlund's one-dimensional consolidation equation for unsaturated soil. The transfer relationship between the state vectors at the top surface and any depth was gained by applying the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. The excess pore-air and pore-water pressures and settlement in the Laplace-transformed domain were obtained by using the Laplace transform with the initial and boundary conditions. The analytical solutions of the excess pore-air and pore-water pressures at any depth and settlement were obtained in the time domain by performing the inverse Laplace transforms. A typical example illustrates the consolidation characteristics of unsaturated soil under sinusoidal loading from analytical results. Finally, comparisons between the analytical solutions and results of the numerical method indicate that the analytical solution is correct.
文摘In this paper, a two-dimensional photonic crystal (2DPC) based pressure sensor is proposed and designed, and the sensing characteristics such as the sensitivity and dynamic range are analyzed over the range of pressure from 0 GPa to 7 GPa. The sensor is based on 2DPC with the square array of silicon rods surrounded by air. The sensor consists of two photonic crystal quasi waveguides and L3 defect. The L3 defect is placed in between two waveguides and is formed by modifying the radius of three Si rods. It is noticed that through simulation, the resonant wavelength of the sensor is shifted linearly towards the higher wavelength region while increasing the applied pressure level. The achieved sensitivity and dynamic range of the sensor is 2 nm/GPa and 7 Gpa, respectively.