[Objective] The aim was to obtain the optimum RAPD-PCR reaction system for Glycyrrhiza uralensis.[Method] Orthogonal design was adopted to screen the suitable concentration of four major factors(dNTPs,primers,Taq pol...[Objective] The aim was to obtain the optimum RAPD-PCR reaction system for Glycyrrhiza uralensis.[Method] Orthogonal design was adopted to screen the suitable concentration of four major factors(dNTPs,primers,Taq polymerase and DNA template) in PCR reaction system.[Result] The optimal reaction system obtained by orthogonal design was 25 μl in total volume,containing 2.5 μl of 10×PCR buffer solution(include MgCl2),2.5 μl of 10 mmol/L dNTPs,2 μl(100 ng) of DNA template,2 μl of 10 μmol/L primers,0.4 μl(5 U) of Taq polymerase;the optimum annealing temperature was 34 ℃.[Conclusion] Orthogonal design was an effective method for the optimization of RAPD-PCR reaction system for G.uralensis.展开更多
基金Supported by Key Projects in the National Science&Technology Pillar Program in the Eleventh Five-year Plan Period(2006BAI06A15-11)~~
文摘[Objective] The aim was to obtain the optimum RAPD-PCR reaction system for Glycyrrhiza uralensis.[Method] Orthogonal design was adopted to screen the suitable concentration of four major factors(dNTPs,primers,Taq polymerase and DNA template) in PCR reaction system.[Result] The optimal reaction system obtained by orthogonal design was 25 μl in total volume,containing 2.5 μl of 10×PCR buffer solution(include MgCl2),2.5 μl of 10 mmol/L dNTPs,2 μl(100 ng) of DNA template,2 μl of 10 μmol/L primers,0.4 μl(5 U) of Taq polymerase;the optimum annealing temperature was 34 ℃.[Conclusion] Orthogonal design was an effective method for the optimization of RAPD-PCR reaction system for G.uralensis.