A novel sorting system based on one degree of freedom (DOF) tendon based parallel manipulator (TBPM) for high value waste processing was presented and designed. In order to control the motion of loads, nonlinear state...A novel sorting system based on one degree of freedom (DOF) tendon based parallel manipulator (TBPM) for high value waste processing was presented and designed. In order to control the motion of loads, nonlinear state feed forward control algorithm in the tendon length coordinate was used. Considering the system redundancy and actuation behavior, algorithms of optimal tension distribution and forward kinematics were designed. Then, the simulation experiments of motion control were implemented. The results demonstrate that the proposed TBPM translation system performs robust capacities. It can transfer the loads 1 m away within 1.5 s. With further optimization, the translation duration can be further reduced to be about 1 s and the optimized translation is followed with 43.59 m/s2 maximum acceleration. The translation errors at the aim position remain below 0.4 mm.展开更多
基金Project(B07028) supported by "111" Introducing Talents of Discipline to University Program through Ministry of Education of China
文摘A novel sorting system based on one degree of freedom (DOF) tendon based parallel manipulator (TBPM) for high value waste processing was presented and designed. In order to control the motion of loads, nonlinear state feed forward control algorithm in the tendon length coordinate was used. Considering the system redundancy and actuation behavior, algorithms of optimal tension distribution and forward kinematics were designed. Then, the simulation experiments of motion control were implemented. The results demonstrate that the proposed TBPM translation system performs robust capacities. It can transfer the loads 1 m away within 1.5 s. With further optimization, the translation duration can be further reduced to be about 1 s and the optimized translation is followed with 43.59 m/s2 maximum acceleration. The translation errors at the aim position remain below 0.4 mm.