期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
关于不定方程σ(x^3)=y^2的一类求解问题
1
作者 管训贵 《苏州科技学院学报(自然科学版)》 CAS 2012年第2期27-29,共3页
对于正整数a,设σ(a)是a的所有正因数的和。运用初等数论的方法证明了方程σ(x3)=y2没有正整数解(x,y)可使x=2np,其中n是正整数,p与23n+1-1=q都是奇素数。这一结果推广和改进了文献[4]中的结论。
关键词 不定方程 正因数和 平方
下载PDF
Congruent elliptic curves with non-trivial Shafarevich-Tate groups: Distribution part 被引量:1
2
作者 WANG ZhangJie 《Science China Mathematics》 SCIE CSCD 2017年第4期593-612,共20页
Given a large positive number x and a positive integer k, we denote by Qk(x) the set of congruent elliptic curves E(n): y2= z3- n2 z with positive square-free integers n x congruent to one modulo eight,having k prime ... Given a large positive number x and a positive integer k, we denote by Qk(x) the set of congruent elliptic curves E(n): y2= z3- n2 z with positive square-free integers n x congruent to one modulo eight,having k prime factors and each prime factor congruent to one modulo four. We obtain the asymptotic formula for the number of congruent elliptic curves E(n)∈ Qk(x) with Mordell-Weil ranks zero and 2-primary part of Shafarevich-Tate groups isomorphic to(Z/2Z)2. We also get a lower bound for the number of E(n)∈ Qk(x)with Mordell-Weil ranks zero and 2-primary part of Shafarevich-Tate groups isomorphic to(Z/2Z)4. The key ingredient of the proof of these results is an independence property of residue symbols. This property roughly says that the number of positive square-free integers n x with k prime factors and residue symbols(quadratic and quartic) among its prime factors being given compatible values does not depend on the actual values. 展开更多
关键词 Shafarevich-Tate group DISTRIBUTION congruent elliptic curve multiplicative number theory num-ber field independence property residue symbol
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部