期刊文献+
共找到262篇文章
< 1 2 14 >
每页显示 20 50 100
基于SSA-RBF神经网络的煤自然发火预测模型
1
作者 高飞 梁宁 +1 位作者 贾喆 侯青 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期128-137,共10页
为解决传统煤自燃预测模型预测状态单一和预测精度不高的问题,提出基于麻雀搜索算法(SSA)优化的径向基(RBF)神经网络煤自然发火预测模型。首先,采用程序升温试验分析煤样指标气随温度的变化特征,将煤自然发火过程按煤温分为缓慢(80≤t_(... 为解决传统煤自燃预测模型预测状态单一和预测精度不高的问题,提出基于麻雀搜索算法(SSA)优化的径向基(RBF)神经网络煤自然发火预测模型。首先,采用程序升温试验分析煤样指标气随温度的变化特征,将煤自然发火过程按煤温分为缓慢(80≤t_(i)<120℃)、加速(120≤t_(i)<160℃)和激烈(t_(i)≥160℃)3个氧化阶段,同时分析这3个阶段指标气与煤温的灰色关联度;其次通过不同维度测试函数检验粒子群算法(PSO)、灰狼算法(GWO)和SSA算法性能;最后利用6个矿区数据验证基于SSA-RBF神经网络的煤自燃预测模型的优越性。结果显示,缓慢氧化阶段CO/ΔO_(2)、CO、C_(2)H_(4)这3种指标气体与煤温的灰色关联系数最大;而加速氧化阶段C_(2)H_(4)/C_(2)H_(6)、CO/ΔO_(2)、CO_(2)/CO_(3)种指标与煤温的灰色关联系数最大。3种不同维度函数的测试结果表明:SSA与PSO、GWO相比具有更好的全局搜索能力和稳定性,其收敛速度更快;神经元数量为5个、迭代次数为300次时,SSA-RBF神经网络预测模型对缓慢氧化和加速氧化阶段的预测准确性分别达到了99%和93%。 展开更多
关键词 麻雀搜索算法(SSA) 径向函数(RBF)神经网络 煤自然发火 预测模型 指标气 灰色关联度
下载PDF
基于改进三元模型的波纹管型气动软体驱动器神经网络滑模控制
2
作者 吕播阳 孟庆鑫 +3 位作者 肖怀 赖旭芝 王亚午 吴敏 《中国机械工程》 EI CAS CSCD 北大核心 2024年第8期1414-1425,共12页
针对一款波纹管型气动软体驱动器,提出了一种基于改进三元模型的滑模控制方法,并使用RBF神经网络补偿扰动以实现该型驱动器在竖直方向上对期望轨迹的跟踪控制。首先搭建波纹管型气动软体驱动器实验平台,测试并分析该驱动器的动态特性,... 针对一款波纹管型气动软体驱动器,提出了一种基于改进三元模型的滑模控制方法,并使用RBF神经网络补偿扰动以实现该型驱动器在竖直方向上对期望轨迹的跟踪控制。首先搭建波纹管型气动软体驱动器实验平台,测试并分析该驱动器的动态特性,基于上述动态特性提出波纹管型气动软体驱动器的改进三元模型;然后利用采集到的实验数据,基于最小二乘算法对其进行参数辨识,从而获得所提模型的参数;进而结合改进三元模型设计滑模控制器,使用RBF神经网络对集总扰动进行补偿,并利用Lyapunov方法分析系统的稳定性;最后通过一系列实验验证了所提方法的有效性。 展开更多
关键词 波纹管 气动软体驱动器 三元模型 滑模控制 径向函数神经网络
下载PDF
SSA-RBF神经网络模型在风电风速预测中的应用研究
3
作者 罗丹 章若冰 余娟 《绿色科技》 2024年第18期194-199,共6页
为了提高风电功率的预测精度和稳定性,以更好应对风速的多变性和非线性特性,提出了一种基于麻雀搜索算法(SSA)优化径向基函数(RBF)神经网络的风速预测模型(SSA-RBFN)。通过SSA优化RBFN的参数,以预测提高模型的精度和稳定性。通过选用风... 为了提高风电功率的预测精度和稳定性,以更好应对风速的多变性和非线性特性,提出了一种基于麻雀搜索算法(SSA)优化径向基函数(RBF)神经网络的风速预测模型(SSA-RBFN)。通过SSA优化RBFN的参数,以预测提高模型的精度和稳定性。通过选用风电场实际数据进行研究,与SSA-BP模型、RBF模型、BP模型进行比较。仿真结果表明:SSA-RBF预测模型在MAE、MBE和RMSE指标上体现出预测误差显著低于传统RBF模型和BP模型,表明提出的模型是可行和有效的。 展开更多
关键词 风速预测 麻雀搜索算法 径向函数神经网络 预测模型优化
下载PDF
云模型优化径向基函数神经网络算法研究 被引量:3
4
作者 刘轲 张冉 +2 位作者 崔志斌 张殿宝 高社干 《河南科技大学学报(自然科学版)》 CAS 北大核心 2023年第5期49-55,M0005,共8页
径向基函数(RBF)神经网络广泛用于各类医学预测模型中,针对RBF神经网络隐含层高斯径向基函数的参数确定困难,影响癌症预后模型的因素具有多样性和模糊性等问题。利用云模型优化RBF神经网络算法,通过高维云变换确定RBF隐含层神经元,优化... 径向基函数(RBF)神经网络广泛用于各类医学预测模型中,针对RBF神经网络隐含层高斯径向基函数的参数确定困难,影响癌症预后模型的因素具有多样性和模糊性等问题。利用云模型优化RBF神经网络算法,通过高维云变换确定RBF隐含层神经元,优化RBF神经网络结构。用来自美国国家癌症研究所监测、流行病学和最终结果(SEER)数据库的4771例食管鳞状细胞癌患者数据建模仿真与传统的仿真对比,证明该模型预测生存期的C-index为0.705,远高于肿瘤等级、列线图和RBF神经网络(0.598、0.627和0.632),能更好更准确地对食管鳞状细胞癌患者进行预后预测。 展开更多
关键词 模型 云变换 径向函数神经网络 预后
下载PDF
基于MPC和RBF神经网络的火箭弹姿态调整策略
5
作者 王琦 易文俊 +2 位作者 管军 高郅泽 徐雷 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第10期269-276,共8页
火箭弹的精准飞行控制目前是国内外军事领域研究中的一个热点话题。针对火箭弹如何能够更好的打击实现精确打击这一问题,提出一种基于模型预测控制和径向基函数神经网络相结合的火箭弹姿态调整策略。该策略利用模型预测控制算法预测得... 火箭弹的精准飞行控制目前是国内外军事领域研究中的一个热点话题。针对火箭弹如何能够更好的打击实现精确打击这一问题,提出一种基于模型预测控制和径向基函数神经网络相结合的火箭弹姿态调整策略。该策略利用模型预测控制算法预测得到姿态调整所需的最优的电机修正值,然后利用径向基函数神经网络算法实现对电机的快速调节响应,以此达到调整姿态修正弹道的目的。仿真结果表明,舵控系统的调整过程误差小、反应快、跟踪效果良好,整体策略具有优良的控制性能。使火箭弹飞行姿态控制系统的鲁棒性和快速性得到了很大的提高。很好的将模型预测算法与径向基函数神经网络算法的优点结合到了一起。 展开更多
关键词 火箭弹 舵控系统 直流无刷电机 弹道修正 姿态调整 模型预测控制 径向函数神经网络
下载PDF
基于径向基函数神经网络的空间漂浮机械臂装配控制 被引量:2
6
作者 刘育强 魏庆生 +2 位作者 李浩然 魏承 赵阳 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2023年第5期831-836,共6页
针对空间漂浮机械臂在轨装配中动力学模型失准、待装配模块质量特性未知情况下的精确控制问题,本文提出了一种基于径向基函数神经网络补偿控制的装配方法。给出空间漂浮装配机械臂的构型设计及动力学模型描述,设计了一种基于径向基函数... 针对空间漂浮机械臂在轨装配中动力学模型失准、待装配模块质量特性未知情况下的精确控制问题,本文提出了一种基于径向基函数神经网络补偿控制的装配方法。给出空间漂浮装配机械臂的构型设计及动力学模型描述,设计了一种基于径向基函数神经网络原理的补偿控制率,进行了稳定性与收敛性分析,推导出基于径向基函数神经网络神经网络的空间漂浮基座机械臂装配控制自适应律。不同工况下的在轨装配仿真案例表明:基于径向基函数神经网络原理补偿的控制方法能够控制机械臂末端执行器在未知特性大负载作用下快速准确地跟踪期望轨迹,而不进行补偿时控制器性能下降严重、甚至失效。所提出装配控制方法具有较强的工程实用价值,能为未来空间装配任务提供有效借鉴。 展开更多
关键词 空间机械臂 空间应用 动力学模型 控制系统分析 控制系统稳定性 神经网络 装配技术 仿真分析 径向函数
下载PDF
基于改进RBF神经网络模型的土壤背景估计算法 被引量:1
7
作者 江晟 叶新 +3 位作者 刘妍秀 李开太 赵鹏 李野 《吉林大学学报(理学版)》 CAS 北大核心 2023年第3期577-582,共6页
针对土壤背景估计算法参数确定后适应性较差的问题,提出一种基于径向基函数(RBF)神经网络模型的土壤背景估计算法,以有效提升针对土壤的能量色散型X射线荧光检测的背景扣除效果及元素定量精度.首先分析了常用的土壤背景估计模型,针对连... 针对土壤背景估计算法参数确定后适应性较差的问题,提出一种基于径向基函数(RBF)神经网络模型的土壤背景估计算法,以有效提升针对土壤的能量色散型X射线荧光检测的背景扣除效果及元素定量精度.首先分析了常用的土壤背景估计模型,针对连续剥峰法和小波变换对背景估计的扣除效果和问题提出基于改进RBF神经网络的算法模型,然后从理论上证明该算法模型的有效性,并将该模型应用于实际的土壤能量色散型X射线荧光检测系统中,对国家标准土壤样品进行检测,对Cr,Zn和As等重金属元素的定量探测进行深入分析.实验结果表明,基于该土壤背景估计算法能更好地进行元素能量特征值提取,降低背景对元素特征峰和质量分数的影响,进而有效提升土壤元素的定量精度. 展开更多
关键词 能量色散型X射线荧光检测 土壤元素分析 径向函数神经网络模型 背景估计
下载PDF
基于层次分析法和径向基函数神经网络的中长期负荷预测综合模型 被引量:38
8
作者 李春祥 牛东晓 孟丽敏 《电网技术》 EI CSCD 北大核心 2009年第2期99-104,共6页
中长期负荷预测是电力系统规划与运行的基础工作,提出基于3指标量,即指标总量、指标增长量和指标增长率的综合模型。首先构建层次分析(analytic hierarchy process,AHP)模型,分别对3个指标量进行分析评价,优选出每个指标量的最优预测模... 中长期负荷预测是电力系统规划与运行的基础工作,提出基于3指标量,即指标总量、指标增长量和指标增长率的综合模型。首先构建层次分析(analytic hierarchy process,AHP)模型,分别对3个指标量进行分析评价,优选出每个指标量的最优预测模型,然后利用径向基函数(radial basic function,RBF)神经网络对3个最优模型的预测结果进行拟合,并将GDP因素也作为神经网络输入数据之一,输出最终的预测结果。AHP模型中综合考虑了模型预测误差和模型拟合度,并成功地加入了人工干预的因素,依据专家经验判断模型的信任度和预测结果趋势可信度。AHP模型采用与预测时刻最近的历史数据进行分析,因此具有较好的实时性。实验结果表明该综合模型具有较高的预测精度,实际应用效果较好。 展开更多
关键词 负荷预测 层次分析法 径向函数神经网络 三指标量 综合模型
下载PDF
基于径向基函数神经网络的婴儿死亡率预测模型 被引量:8
9
作者 殷菲 潘晓平 +2 位作者 张彤 张晓辉 吴震 《现代预防医学》 CAS 北大核心 2006年第4期486-487,499,共3页
目的:采用径向基函数神经网络建立预测模型对婴儿死亡率进行预测。方法:采用径向基函数神经网络建立回归模型,并对全国22个省的32个县的婴儿死亡率进行预测。结果:预测值与实际值误差较小。该模型具有较高的预测精度。结论:利用径向基... 目的:采用径向基函数神经网络建立预测模型对婴儿死亡率进行预测。方法:采用径向基函数神经网络建立回归模型,并对全国22个省的32个县的婴儿死亡率进行预测。结果:预测值与实际值误差较小。该模型具有较高的预测精度。结论:利用径向基函数神经网络建立预测模型是一个新颖而有发展前途的方法。 展开更多
关键词 径向函数神经网络 婴儿死亡率 预测模型
下载PDF
基于径向基函数的混合神经网络模型研究 被引量:11
10
作者 陈德军 胡华成 周祖德 《武汉理工大学学报》 EI CAS CSCD 北大核心 2007年第2期122-125,142,共5页
随着系统复杂程度的增加,构造一个径向基函数神经网络(RBFNN)所需样本及训练时间都急剧增加,得到的复杂网络往往不能完全揭示问题的层次和结构。采用“分而治之”的思想,提出了一种基于RBF的混合网络模型,通过最短距离均匀聚类方法划分... 随着系统复杂程度的增加,构造一个径向基函数神经网络(RBFNN)所需样本及训练时间都急剧增加,得到的复杂网络往往不能完全揭示问题的层次和结构。采用“分而治之”的思想,提出了一种基于RBF的混合网络模型,通过最短距离均匀聚类方法划分样本空间,构造合适的子样本集和子网络模型对网络进行训练,与采用正交最小二乘法的单独RBF网络在结构、训练时间、泛化能力上做了对比。结果表明其时间复杂度有显著降低,网络的泛化能力与精度比全局RBFNN有明显提高。整个网络模型具有良好的扩展性和应用前景,适合于大样本神经网络的建模和训练问题。 展开更多
关键词 径向函数 神经网络 混合网络模型
下载PDF
基于径向基函数神经网络的温室室内温度预测模型 被引量:14
11
作者 余朝刚 王剑平 应义斌 《生物数学学报》 CSCD 北大核心 2006年第4期549-553,共5页
试验证实径向基函数神经网络(Radial Basias Function Neural Network)在函数逼近能力、训练速度方面都有良好的性能.采用最小正交二乘法为训练算法,基于传统的数学分析,用PRIVA公司温室监控系统采集数据,选用当前时刻室外温度、风速... 试验证实径向基函数神经网络(Radial Basias Function Neural Network)在函数逼近能力、训练速度方面都有良好的性能.采用最小正交二乘法为训练算法,基于传统的数学分析,用PRIVA公司温室监控系统采集数据,选用当前时刻室外温度、风速、太阳辐照度、顶窗开度、内帘幕展开度、水温、室内温度、相对湿度,再加上1个时间间隔、2个时间间隔以前的室内温度作为输入向量,获得了满意的温室室内温度一步预测模型(均方差等于0.0073).该模型为设计温室环境控制器及分析温室性能奠定了良好基础. 展开更多
关键词 温室 温度 预测模型 径向函数神经网络
下载PDF
基于径向基函数神经网络的多级离心压缩机混合模型 被引量:6
12
作者 褚菲 王福利 +1 位作者 王小刚 张淑宁 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第9期1205-1210,共6页
大型离心压缩机作为多影响因素和强非线性的复杂系统,其性能的准确预测难以实现.针对这一问题,结合径向基函数(RBF)神经网络,本文建立了多级离心压缩机性能预测的混合模型.首先基于热力学第一定律和压缩机能量损失机理建立了多级离心压... 大型离心压缩机作为多影响因素和强非线性的复杂系统,其性能的准确预测难以实现.针对这一问题,结合径向基函数(RBF)神经网络,本文建立了多级离心压缩机性能预测的混合模型.首先基于热力学第一定律和压缩机能量损失机理建立了多级离心压缩机性能预测的机理模型.该模型无需任何实验确定的性能曲线,完全由压缩机的几何结构参数预测出压缩机在设计工况和非设计工况下的性能.然后利用RBF神经网络修正机理模型的误差,并通过对RBF神经网络的不断更新,进一步提高了模型的预测精度和适用性.将所建立的混合模型应用于实际的离心压缩机,结果表明该方法具有良好的预测性能. 展开更多
关键词 离心压缩机 性能预测 混合模型 径向函数神经网络 非线性 能量损失机理
下载PDF
基于径向基函数神经网络的地下水数值模拟模型的替代模型研究 被引量:8
13
作者 伊燕平 卢文喜 +3 位作者 张耘 芦贵君 王大中 洪德法 《水土保持研究》 CSCD 北大核心 2012年第4期265-269,共5页
近年来提出的替代模型方法是一种连接数值模拟模型与优化模型的有效途径,替代模型质量的好坏取决于采样方法和替代模型种类。以金泉工业园区地下水水源地为研究区,基于拉丁超立方抽样方法,结合研究区地下水数值模拟模型,获取输入(抽水量... 近年来提出的替代模型方法是一种连接数值模拟模型与优化模型的有效途径,替代模型质量的好坏取决于采样方法和替代模型种类。以金泉工业园区地下水水源地为研究区,基于拉丁超立方抽样方法,结合研究区地下水数值模拟模型,获取输入(抽水量)输出(水位降深)数据集,运用人工神经网络方法,建立径向基函数神经网络模型,作为地下水数值模拟模型的近似替代模型。经验证,径向基函数神经网络模型输出得到的水位降深均值与模拟模型计算结果的拟合平均相对误差为0.038;水位降深剩余标准差的拟合平均相对误差为0.042。拟合平均相对误差较小,表明径向基函数神经网络模型能够有效地替代地下水数值模拟模型,为日后替代模型的深入研究提供了科学依据。 展开更多
关键词 替代模型 径向函数神经网络 拉丁超立方抽样 金泉工业园区
下载PDF
基于径向基函数神经网络的非线性模型辨识 被引量:17
14
作者 宋宜斌 王培进 《计算机工程》 CAS CSCD 北大核心 2004年第5期142-143,169,共3页
从径向基函数(RBF)神经网络原理分析出发,提出了一种基于RBF神经网络学习算法,用于对非线性对象模型的拟合与辨识,并将此方法用于实际非线性模型的学习与辨识。结果表明,基于RBF的神经网络可快速完成对样本的学习与拟合,对具有... 从径向基函数(RBF)神经网络原理分析出发,提出了一种基于RBF神经网络学习算法,用于对非线性对象模型的拟合与辨识,并将此方法用于实际非线性模型的学习与辨识。结果表明,基于RBF的神经网络可快速完成对样本的学习与拟合,对具有连续特性的线性与非线性模型,具有快速实时的学习速度和优良的学习性能。 展开更多
关键词 RBF神经网络 非线性模型辨识 径向函数
下载PDF
基于径向基函数神经网络的组合模型在煤工尘肺发病工龄预测中的应用 被引量:1
15
作者 武建辉 薛玲 +2 位作者 郭正军 尹素凤 王国立 《郑州大学学报(医学版)》 CAS 北大核心 2014年第6期818-822,共5页
目的:研究径向基函数(RBF)神经网络与多重线性回归的组合模型在煤工尘肺发病工龄预测中的性能优劣。方法:采用RBF神经网络模型与多重线性回归模型对研究数据进行分析,对2模型进行加权拟合,采用均方根误差、均方误差、平均相对误差对模... 目的:研究径向基函数(RBF)神经网络与多重线性回归的组合模型在煤工尘肺发病工龄预测中的性能优劣。方法:采用RBF神经网络模型与多重线性回归模型对研究数据进行分析,对2模型进行加权拟合,采用均方根误差、均方误差、平均相对误差对模型的预测性能进行评价。结果:多重线性回归模型、RBF神经网络模型和组合模型真实值与预测值比较,差异均无统计学意义(t配对=1.552、0.231、0.155,P均>0.05)。多重线性回归模型、RBF神经网络模型和组合模型的均方根误差分别为(1.63±0.11)、(2.45±0.19)和(0.59±0.07)(F=26.141,P<0.001),均方误差分别为(2.656 9±0.241 2)、(5.986 7±0.380 4)和(0.348 3±0.065 3)(F=49.678,P<0.001),平均相对误差分别为(7.15±0.82)%、(15.39±1.25)%和(3.68±0.59)%(F=35.282,P<0.001)。结论:在煤工尘肺发病工龄的预测中,组合模型预测性能优于单一模型。 展开更多
关键词 径向函数神经网络 多重线性回归模型 组合模型 煤工尘肺 发病工龄
下载PDF
基于广义椭球基函数模糊神经网络的油轮转向动态响应模型(英文) 被引量:1
16
作者 王宁 王丹 李铁山 《中国科学技术大学学报》 CAS CSCD 北大核心 2012年第9期705-713,共9页
基于广义椭球基函数模糊神经网络(GEBF-FNN)算法,提出一种新颖的油轮转向动态响应模型.通过事先建立好的一组油轮操纵非线性微分方程获得训练数据,GEBF-FNN算法用于在线辨识Nomoto型油轮转向响应模型的参数K和T.具体地,GEBF-FNN模型从... 基于广义椭球基函数模糊神经网络(GEBF-FNN)算法,提出一种新颖的油轮转向动态响应模型.通过事先建立好的一组油轮操纵非线性微分方程获得训练数据,GEBF-FNN算法用于在线辨识Nomoto型油轮转向响应模型的参数K和T.具体地,GEBF-FNN模型从没有任何模糊规则开始,基于规则生长准则和参数估计方法,在线生成模糊规则,从而学习出由一组模糊规则构成的具有高精度和精简系统结构的油轮转向动态响应模型.为验证该动态响应模型的有效性,针对典型的Z形操纵进行仿真研究,并进行广泛的比较研究,仿真结果显示基于GEBF-FNN算法的油轮动态响应模型具有理想的逼近和预测性能. 展开更多
关键词 油轮转向 响应模型 模糊神经网络 广义椭球函数
下载PDF
基于径向基函数神经网络模型对非饱和土参数的反演 被引量:2
17
作者 刘俊新 刘育田 《浙江工业大学学报》 CAS 北大核心 2010年第1期90-94,共5页
通过建立考虑水气两相非饱和渗流的正演有限元模型,以归一化的数值模拟结果的出水时间为输入目标,以归一化的不同水平参数组合为输出目标,同时以归一化的模型试验结果为测试输入变量,利用径向基函数神经网络模型对不同压实系数下红层填... 通过建立考虑水气两相非饱和渗流的正演有限元模型,以归一化的数值模拟结果的出水时间为输入目标,以归一化的不同水平参数组合为输出目标,同时以归一化的模型试验结果为测试输入变量,利用径向基函数神经网络模型对不同压实系数下红层填料非饱和土参数进行了反演;并且利用反演的参数对不同压实下相对应初始饱和度数值模拟水渗出时间与实际水渗出时间进行了比较,证明了采用径向基函数神经网络模型对非饱和参数反演的可行性. 展开更多
关键词 非饱和土参数 非饱和渗流 径向函数神经网络模型 反演
下载PDF
电力负荷的径向基函数神经网络模型预测 被引量:1
18
作者 李程 谭阳红 《广东电力》 2010年第5期1-3,11,共4页
由于基于反向传播(back propagation,BP)的神经网络模型自身固有的缺点,其电力负荷预测结果不理想,而径向基函数(radial basis function,RBF)神经网络模型具有全局逼近的性质,不存在局部最小问题,为此,针对中长期电力负荷预测,给出了RB... 由于基于反向传播(back propagation,BP)的神经网络模型自身固有的缺点,其电力负荷预测结果不理想,而径向基函数(radial basis function,RBF)神经网络模型具有全局逼近的性质,不存在局部最小问题,为此,针对中长期电力负荷预测,给出了RBF的预测原理,推导权值的更新方式,并和BP方法结果进行对比分析,结果证明基于RBF神经网络模型的方法收敛速度快、预报精度高、误差小。 展开更多
关键词 反向传播神经网络模型 径向函数神经网络模型 负荷预测
下载PDF
基于径向基函数神经网络的高校图书馆用户满意度评价模型 被引量:9
19
作者 范一文 《农业图书情报学刊》 2016年第3期10-13,共4页
如何客观准确的评价高校图书馆用户满意度是一个比较困难的问题。近年来,BP神经网络技术完全以客观数据为基础,可充分挖掘出潜在的有用信息,有效避免人为主观因素的影响,成为高校图书馆用户满意度评价的热点之一。相比传统BP神经网络,... 如何客观准确的评价高校图书馆用户满意度是一个比较困难的问题。近年来,BP神经网络技术完全以客观数据为基础,可充分挖掘出潜在的有用信息,有效避免人为主观因素的影响,成为高校图书馆用户满意度评价的热点之一。相比传统BP神经网络,将学习速度更快、易于收敛的径向基函数神经网络技术应用于高校图书馆满意度评价中,重点论述了径向基函数神经网络评价模型的设计和实现,并通过实例分析验证了该模型的有效性。 展开更多
关键词 高校图书馆 用户满意度 径向函数 神经网络 评价模型
下载PDF
径向基函数神经网络预测城市用水量模型及应用 被引量:3
20
作者 王宝庆 马奇涛 王德庆 《供水技术》 2010年第3期28-30,共3页
以城市用水人口和城市生产总值作为输入向量,年用水量数据作为目标向量,建立了径向基函数神经网络并对城市用水量进行预测。采用不同的扩展速度,预测误差不同。当扩展速度spread=1时,预测数据与实际数据的相对误差均小于0.05%,取得了很... 以城市用水人口和城市生产总值作为输入向量,年用水量数据作为目标向量,建立了径向基函数神经网络并对城市用水量进行预测。采用不同的扩展速度,预测误差不同。当扩展速度spread=1时,预测数据与实际数据的相对误差均小于0.05%,取得了很好的预测效果,说明采用径向基函数神经网络模型预测城市用水量的方法是可行的。 展开更多
关键词 径向函数 神经网络 城市用水量 预测模型
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部