The free energy in 1D sine-Gordon- Thirring model with impurity coupling is studied by means of functional integrals and variational-cumulant expansion methods. Two variational parameters are introduced to evaluate fr...The free energy in 1D sine-Gordon- Thirring model with impurity coupling is studied by means of functional integrals and variational-cumulant expansion methods. Two variational parameters are introduced to evaluate free energy and statistical averages. It is shown that the non-perturbation method of functional integrals can be applied to strongcoupling range of fcrmion systems.展开更多
The free energy at low temperature in 1D sine-Gordon-Thirring model with impurity coupling is studied by means of functional integrals method. For massive free sine-Gordon-Thirring model, free energy is obtained from ...The free energy at low temperature in 1D sine-Gordon-Thirring model with impurity coupling is studied by means of functional integrals method. For massive free sine-Gordon-Thirring model, free energy is obtained from perturbation expansion of functional determinant. Moreover, the free energy of massive model is calculated by use of an auxiliary Bose field method.展开更多
基金the Natural Science Foundation of Sichuan Normal University
文摘The free energy in 1D sine-Gordon- Thirring model with impurity coupling is studied by means of functional integrals and variational-cumulant expansion methods. Two variational parameters are introduced to evaluate free energy and statistical averages. It is shown that the non-perturbation method of functional integrals can be applied to strongcoupling range of fcrmion systems.
基金The project supported by the Natural Science Foundation of Sichuan Normal University
文摘The free energy at low temperature in 1D sine-Gordon-Thirring model with impurity coupling is studied by means of functional integrals method. For massive free sine-Gordon-Thirring model, free energy is obtained from perturbation expansion of functional determinant. Moreover, the free energy of massive model is calculated by use of an auxiliary Bose field method.