期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
关于双下标序列和渐近正态收敛速度的描述 被引量:1
1
作者 王启应 《数学杂志》 CSCD 北大核心 1992年第3期334-341,共8页
设ε_j-∞≤j≤∞为一串 i.i.d.r.v.序列,{a_(nj)}为双下标常数列,S_n=(?)α_(nj)ε_j,A_n^2=(?) α_(nj)~2。本文研究了 (S_n)/(A_n) 渐近正态收敛速度的各种描述,其中包括非一致 Berry-Essen 界,L_p(1≤p≤∞)下界等。
关键词 序列 正态收敛速度 双下标
下载PDF
关于Von-Mises统计量渐近正态收敛速度的进一步讨论
2
作者 温红蕾 蔡小云 《温州师范学院学报》 2000年第6期7-9,共3页
本文讨论了Von Mises统计量向正态逼近的一致收敛速度问题 ,在核函数仅满足二阶矩条件下 ,给  出了上述收敛速度的上、下界 ,所得结果改进了 [2
关键词 VON-MISES统计量 正态收敛 核函数 二阶矩 收敛速度 独立同分布随机变量 U-统计量
下载PDF
Sieve M-estimator for a semi-functional linear model 被引量:2
3
作者 HUANG LeLe WANG HuiWen +1 位作者 CUI HengJian WANG SiYang 《Science China Mathematics》 SCIE CSCD 2015年第11期2421-2434,共14页
We propose sieve M-estimator for a semi-functional linear model in which the scalar response is explained by a linear operator of functional predictor and smooth functions of some real-valued random variables.Spline e... We propose sieve M-estimator for a semi-functional linear model in which the scalar response is explained by a linear operator of functional predictor and smooth functions of some real-valued random variables.Spline estimators of the functional coefficient and the smooth functions are considered,and by selecting appropriate knot numbers the optimal convergence rate and the asymptotic normality can be obtained under some mild conditions.Some simulation results and a real data example are presented to illustrate the performance of our estimation method. 展开更多
关键词 functional linear model sieve estimator SPLINE knot number convergence rate
原文传递
Conditional Quantile Estimation with Truncated,Censored and Dependent Data
4
作者 Hanying LIANG Deli LI Tianxuan MIAO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第6期969-990,共22页
This paper deals with the conditional quantile estimation based on left-truncated and right-censored data.Assuming that the observations with multivariate covariates form a stationary α-mixing sequence,the authors de... This paper deals with the conditional quantile estimation based on left-truncated and right-censored data.Assuming that the observations with multivariate covariates form a stationary α-mixing sequence,the authors derive the strong convergence with rate,strong representation as well as asymptotic normality of the conditional quantile estimator.Also,a Berry-Esseen-type bound for the estimator is established.In addition,the finite sample behavior of the estimator is investigated via simulations. 展开更多
关键词 Berry-Esseen-type bound Conditional quantile estimator Strong rep-resentation Truncated and censored data Α-MIXING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部