The dynamic interfacial tensions between hydrocarbons and solutions of surfactants having different hydrophilic- lipophilic ability are measured.The effects of ionic strength and alkyl chain carbon- number on dynamic ...The dynamic interfacial tensions between hydrocarbons and solutions of surfactants having different hydrophilic- lipophilic ability are measured.The effects of ionic strength and alkyl chain carbon- number on dynamic interfacial tensions are also studied.It is found that adsorption- desorption barriers are connected with the hydrophilic- lipophilic ability of surfactants.There exists a large or small adsorption- desorption barrier to the transfer of surfactant having strong hydrophilic or lipophilic ability from water to oil.The influences of ionic strength and alkyl chain carbon- number on adsorption- desorption barriers are discussed.展开更多
In our previous paper we extended the Tao and Mason equation of state (TM EOS) to refrigerant fluids, using the speed of sound data. This is a continuation for evaluating TM EOS in predicting PVT properties of heavy n...In our previous paper we extended the Tao and Mason equation of state (TM EOS) to refrigerant fluids, using the speed of sound data. This is a continuation for evaluating TM EOS in predicting PVT properties of heavy n-alkanes. Liquid density of long-chain n-alkane systems from C 9 to C 20 have been calculated using an analytical equation of state based on the statistical-mechanical perturbation theory. The second virial coefficients of these n-alkanes are scarce and there is no accurate potential energy function for their theoretical calculation. In this work the second virial coefficients are calculated using a corresponding state correlation based on surface tension and liquid density at the freezing point. The deviation of calculated densities of these alkanes is within 0.5% from experimental data. The densities of n-alkanes obtained from the TM EOS are compared with those calculated from Ihm-Song-Mason equation of state and the corresponding-states liquid densities (COSTALD). Our results are in favor of the preference of the TM EOS over other two equations of state.展开更多
Air or inert atmosphere irradiation of liquid normal alkanes C5-C8 and benzene by electron beam was carried out. Oxidation (in the air) or isomerization (in the inert gases) of liquid normal alkanes under electron...Air or inert atmosphere irradiation of liquid normal alkanes C5-C8 and benzene by electron beam was carried out. Oxidation (in the air) or isomerization (in the inert gases) of liquid normal alkanes under electron beam was shown. Action of electron beam on benzene molecules in the air or in the inert atmosphere leads to biphenyl, terphenyl and polymers. Irradiation by the bunch of electrons of mixture hexane with 10% benzene reduced to firm fractions (fullerene's similar structures) in a deposit.展开更多
Many studies have observed that leaf wax δDn-alkane values differed significantly between woods and grasses in modern plants, with grasses D-depleted by 40 %0-70 ‰. The reasons for the differences in leaf wax δDn-a...Many studies have observed that leaf wax δDn-alkane values differed significantly between woods and grasses in modern plants, with grasses D-depleted by 40 %0-70 ‰. The reasons for the differences in leaf wax δDn-alkane values between woods and grasses, however, remain unclear. In this study, we measured the δD values of soil water (δDsw), leaf water (δDlw), and leaf wax n-alkane (δDn-alkane) for woods and grasses. We found no significant differences in the δD values of soil water (P = 0.82) and leaf water (P= 0.74) between the two life forms of plants. Therefore, the differences in leaf wax δDn-alkane values between woods and grasses may correlate with inherent properties of different plant life forms, such as leaf structures, biosynthetic processes, and leaf morphologies. Moreover, it is also possible that soil water with different 6Dsw at different depths utilized by woods and grasses may be responsible for some of the differences in leaf wax δDn-alkane values between the two life forms of plants, if woods mainly use soil water from the 〉100 cm depth, whereas grasses mainly use soil water from the 〈100 cm depth. The results of this work allow us to better understand the leaf wax δDn-alkane values of different plant life forms in a region.展开更多
To investigate characteristics of H isotope variation in long-chain n-alkanes (δDn-alkanes) from higher plants in surface soils under a single ecosystem, 12 samples from a basalt regolith were randomly collected fr...To investigate characteristics of H isotope variation in long-chain n-alkanes (δDn-alkanes) from higher plants in surface soils under a single ecosystem, 12 samples from a basalt regolith were randomly collected from Damaping in Wanquan County of Zhangjiakou in North China. Molecular distribution and C (δ^13Cn-alkanes) and H isotopes of long-chain n-alkanes, as well as C isotopes of TOC (δ^13CTOC), were analyzed. Both δ^13CTOC and δ^13Cn-alkanes values from four representative dominant long-chain n-alkanes (n-C27, n-C29, n-C31, n-C33) derived from terrestrial higher plants show minor variations among the 12 samples, indicating the major contributor is from local grasses with a uniform C3 photosynthetic pathway. In contrast, variations in δ^13Cn-alkanes values of the four long-chain n-alkanes are relatively large, with the more abundant homologs generally showing more negative δDn-alkanes values and less variation. However, variation of 〈30‰ among weighted averaged δDn-alkanes values of the four long-chain n-alkanes is not only less than that among δDn-alkanes values for different modern terrestrial C3 grasses from the specific locations, but also less than the literature values of δDn-alkanes of long-chain n-alkanes for single species over different seasons. Thus, because the sources of long-chain n-alkanes in surface soils and sediments are similarly from multiple individual plants, our results are significant in confirming that paleoclimatic, paleoenvironmental and paleohydrological information can be interpreted more accurately from δDn-alkanes values of long-chain n-alkanes from sediments, particularly terrestrial sediments with organic matter derived from in-situ plants.展开更多
文摘The dynamic interfacial tensions between hydrocarbons and solutions of surfactants having different hydrophilic- lipophilic ability are measured.The effects of ionic strength and alkyl chain carbon- number on dynamic interfacial tensions are also studied.It is found that adsorption- desorption barriers are connected with the hydrophilic- lipophilic ability of surfactants.There exists a large or small adsorption- desorption barrier to the transfer of surfactant having strong hydrophilic or lipophilic ability from water to oil.The influences of ionic strength and alkyl chain carbon- number on adsorption- desorption barriers are discussed.
基金H. Karimi and F. Yousefi would like to thank Yasouj University for supporting this project
文摘In our previous paper we extended the Tao and Mason equation of state (TM EOS) to refrigerant fluids, using the speed of sound data. This is a continuation for evaluating TM EOS in predicting PVT properties of heavy n-alkanes. Liquid density of long-chain n-alkane systems from C 9 to C 20 have been calculated using an analytical equation of state based on the statistical-mechanical perturbation theory. The second virial coefficients of these n-alkanes are scarce and there is no accurate potential energy function for their theoretical calculation. In this work the second virial coefficients are calculated using a corresponding state correlation based on surface tension and liquid density at the freezing point. The deviation of calculated densities of these alkanes is within 0.5% from experimental data. The densities of n-alkanes obtained from the TM EOS are compared with those calculated from Ihm-Song-Mason equation of state and the corresponding-states liquid densities (COSTALD). Our results are in favor of the preference of the TM EOS over other two equations of state.
文摘Air or inert atmosphere irradiation of liquid normal alkanes C5-C8 and benzene by electron beam was carried out. Oxidation (in the air) or isomerization (in the inert gases) of liquid normal alkanes under electron beam was shown. Action of electron beam on benzene molecules in the air or in the inert atmosphere leads to biphenyl, terphenyl and polymers. Irradiation by the bunch of electrons of mixture hexane with 10% benzene reduced to firm fractions (fullerene's similar structures) in a deposit.
文摘Many studies have observed that leaf wax δDn-alkane values differed significantly between woods and grasses in modern plants, with grasses D-depleted by 40 %0-70 ‰. The reasons for the differences in leaf wax δDn-alkane values between woods and grasses, however, remain unclear. In this study, we measured the δD values of soil water (δDsw), leaf water (δDlw), and leaf wax n-alkane (δDn-alkane) for woods and grasses. We found no significant differences in the δD values of soil water (P = 0.82) and leaf water (P= 0.74) between the two life forms of plants. Therefore, the differences in leaf wax δDn-alkane values between woods and grasses may correlate with inherent properties of different plant life forms, such as leaf structures, biosynthetic processes, and leaf morphologies. Moreover, it is also possible that soil water with different 6Dsw at different depths utilized by woods and grasses may be responsible for some of the differences in leaf wax δDn-alkane values between the two life forms of plants, if woods mainly use soil water from the 〉100 cm depth, whereas grasses mainly use soil water from the 〈100 cm depth. The results of this work allow us to better understand the leaf wax δDn-alkane values of different plant life forms in a region.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40901055 and 40872111)the Key Program of Chinese Ministry of Education (Grant No. 109151)+1 种基金the National Basic Research Program of China (Grant No. 2010CB950202)the NSFC National Innovative Research Team Project (Grant No. 41021091)
文摘To investigate characteristics of H isotope variation in long-chain n-alkanes (δDn-alkanes) from higher plants in surface soils under a single ecosystem, 12 samples from a basalt regolith were randomly collected from Damaping in Wanquan County of Zhangjiakou in North China. Molecular distribution and C (δ^13Cn-alkanes) and H isotopes of long-chain n-alkanes, as well as C isotopes of TOC (δ^13CTOC), were analyzed. Both δ^13CTOC and δ^13Cn-alkanes values from four representative dominant long-chain n-alkanes (n-C27, n-C29, n-C31, n-C33) derived from terrestrial higher plants show minor variations among the 12 samples, indicating the major contributor is from local grasses with a uniform C3 photosynthetic pathway. In contrast, variations in δ^13Cn-alkanes values of the four long-chain n-alkanes are relatively large, with the more abundant homologs generally showing more negative δDn-alkanes values and less variation. However, variation of 〈30‰ among weighted averaged δDn-alkanes values of the four long-chain n-alkanes is not only less than that among δDn-alkanes values for different modern terrestrial C3 grasses from the specific locations, but also less than the literature values of δDn-alkanes of long-chain n-alkanes for single species over different seasons. Thus, because the sources of long-chain n-alkanes in surface soils and sediments are similarly from multiple individual plants, our results are significant in confirming that paleoclimatic, paleoenvironmental and paleohydrological information can be interpreted more accurately from δDn-alkanes values of long-chain n-alkanes from sediments, particularly terrestrial sediments with organic matter derived from in-situ plants.